Что такое эдс самоиндукции

Самоиндукция

что такое эдс самоиндукции

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: самоиндукция, индуктивность, энергия магнитного поля

Самоиндукция является частным случаем электромагнитной индукции. Оказывается, что электрический ток в контуре, меняющийся со временем, определённым образом воздействует сам на себя.

Ситуация 1 .Предположим, что сила тока в контуре возрастает. Пусть ток течёт против часовой стрелки; тогда магнитное поле этого тока направлено вверх и увеличивается (рис. 1).

Рис. 1. Вихревое поле препятствует увеличению тока

Таким образом, наш контур оказывается в переменном магнитном поле своего собственного тока. Магнитное поле в данном случае возрастает (вместе с током) и потому порождает вихревое электрическое поле, линии которого направлены по часовой стрелке в соответствии с правилом Ленца.

Как видим, вихревое электрическое поле направлено против тока, препятствуя его возрастанию; оно как бы «тормозит» ток. Поэтому при замыкании любой цепи ток устанавливается не мгновенно — требуется некоторое время, чтобы преодолеть тормозящее действие возникающего вихревого электрического поля.

Ситуация 2 . Предположим теперь, что сила тока в контуре уменьшается. Магнитное поле тока также убывает и порождает вихревое электрическое поле, направленное против часовой стрелки (рис. 2).

Рис. 2. Вихревое поле поддерживает убывающий ток

Теперь вихревое электрическое поле направлено в ту же сторону, что и ток; оно поддерживает ток, препятствуя его убыванию.

Как мы знаем, работа вихревого электрического поля по перемещению единичного положительного заряда вокруг контура — это ЭДС индукции. Поэтому мы можем дать такое определение.

Явление самоиндукции состоит в том, что при изменении силы тока в контуре возникает ЭДС индукции в этом же самом контуре.

При возрастании силы тока (в ситуации 1) вихревое электрическое поле совершает отрицательную работу, тормозя свободные заряды. Стало быть, ЭДС индукции в этом случае отрицательна.

При убывании силы тока (в ситуации 2) вихревое электрическое поле совершает положительную работу, «подталкивая» свободные заряды и препятствуя убыванию тока. ЭДС индукции в этом случае также положительна (нетрудно убедиться в том, что знак ЭДС индукции, определённый таким образом, согласуется с правилом выбора знака для ЭДС индукции, сформулированным в листке «Электромагнитная индукция»).

Индуктивность

Мы знаем, что магнитный поток, пронизывающий контур, пропорционален индукции магнитного поля: . Кроме того, опыт показывает, что величина индукции магнитного поля контура с током пропорциональна силе тока: . Стало быть, магнитный поток через поверхность контура, создаваемый магнитным полем тока в этом самом контуре, пропорционален силе тока: .

Коэффициент пропорциональности обозначается и называется индуктивностью контура:

(1)

Индуктивность зависит от геометрических свойств контура (формы и размеров), а также от магнитных свойств среды, в которую помещён контур (Улавливаете аналогию? Ёмкость конденсатора зависит от его геометрических характеристик, а также от диэлектрической проницаемости среды между обкладками конденсатора). Единицей измерения индуктивности служит генри (Гн).

Допустим, что форма контура, его размеры и магнитные свойства среды остаются постоянными (например, наш контур — это катушка, в которую не вводится сердечник); изменение магнитного потока через контур вызвано только изменением силы тока. Тогда , и закон Фарадея приобретает вид:

(2)

Благодаря знаку «минус» в (2) ЭДС индукции оказывается отрицательной при возрастании тока и положительной при убывании тока, что мы и видели выше.

Рассмотрим два опыта, демонстрирующих явление самоиндукции при замыкании и размыкании цепи.

Рис. 3. Самоиндукция при замыкании цепи

В первом опыте к батарейке подключены параллельно две лампочки, причём вторая — последовательно с катушкой достаточно большой индуктивности (рис. 3).

Ключ вначале разомкнут.

При замыкании ключа лампочка 1 загорается сразу, а лампочка 2 — постепенно. Дело в том, что в катушке возникает ЭДС индукции, препятствующая возрастанию тока. Поэтому максимальное значение тока во второй лампочке устанавливается лишь спустя некоторое заметное время после вспыхивания первой лампочки.

Это время запаздывания тем больше, чем больше индуктивность катушки. Объяснение простое: ведь тогда больше будет напряжённость вихревого электрического поля, возникающего в катушке, и потому батарейке придётся совершить большую работу по преодолению вихревого поля, тормозящего заряженные частицы.

Во втором опыте к батарейке подключены параллельно катушка и лампочка (рис. 4). Сопротивление катушки много меньше сопротивления лампочки.

Рис. 4. Самоиндукция при размыкании цепи

Ключ вначале замкнут. Лампочка не горит — напряжение на ней близко к нулю из-за малости сопротивления катушки. Почти весь ток, идущий в неразветвлённой цепи, проходит через катушку.

При размыкании ключа лампочка ярко вспыхивает! Почему? Ток через катушку начинает резко убывать, и возникает значительная ЭДС индукции, поддерживающая убывающий ток (ведь ЭДС индукции, как видно из (2), пропорциональна скорости изменения тока).

Иными словами, при размыкании ключа в катушке появляется весьма большое вихревое электрическое поле, разгоняющее свободные заряды. Под действием этого вихревого поля через лампочку пробегает импульс тока, и мы видим яркую вспышку. При достаточно большой индуктивности катушки ЭДС индукции может стать существенно больше ЭДС батарейки, и лампочка вовсе перегорит.

Лампочку-то, может, и не жалко, но в промышленности и энергетике данный эффект является серьёзной проблемой.

Так как при размыкании цепи ток начинает уменьшаться очень быстро, возникающая в цепи ЭДС индукции может значительно превышать номинальные напряжения и достигать опасно больших величин.

Поэтому в агрегатах, потребляющих большой ток, предусмотрены специальные аппаратные меры предосторожности (например, масляные выключатели на электростанциях), препятствующие моментальному размыканию цепи.

Электромеханическая аналогия

Нетрудно заметить определённую аналогию между индуктивностью в электродинамике и массой в механике.

1. Чтобы разогнать тело до заданной скорости, требуется некоторое время — мгновенно изменить скорость тела не получается. При неизменной силе, приложенной к телу, это время тем больше, чем больше масса тела.

Чтобы ток в катушке достиг своего максимального значения, требуется некоторое время; мгновенно ток не устанавливается. Время установления тока тем больше, чем больше индуктивность катушки.

2. Если тело налетает на неподвижную стену, то скорость тела уменьшается очень быстро. Стена принимает на себя удар, и его разрушительное действие тем сильнее, чем больше масса тела.

При размыкании цепи с катушкой ток уменьшается очень быстро. Цепь принимает на себя «удар» в виде вихревого электрического поля, порождаемого убывающим магнитным полем тока, и этот «удар» тем сильнее, чем больше индуктивность катушки. ЭДС индукции может достичь столь больших величин, что пробой воздушного промежутка выведет из строя оборудование.

На самом деле эти электромеханические аналогии простираются довольно далеко;они касаются не только индуктивности и массы, но и других величин, и оказываются весьма полезными на практике. Мы ещё поговорим об этом в листке про электромагнитные колебания.

Энергия магнитного поля

Вспомним второй опыт с лампочкой, которая не горит при замкнутом ключе и ярко вспыхивает при размыкании цепи. Мы непосредственно наблюдаем, что после размыкания ключа в лампочке выделяется энергия. Но откуда эта энергия берётся?

Берётся она, ясное дело, из катушки — больше неоткуда. Но что за энергия была запасена в катушке и как вычислить эту энергию? Чтобы понять это, продолжим нашу электромеханическую аналогию между индуктивностью и массой.

ЭТО ИНТЕРЕСНО:  Smd что это значит

Чтобы разогнать тело массы из состояния покоя до скорости , внешняя сила должна совершить работу . Тело приобретает кинетическую энергию, которая равна затраченной работе: .

Источник: https://ege-study.ru/ru/ege/materialy/fizika/samoindukciya/

Меры по защите сигнализаторов при возникновении ЭДС самоиндукции

что такое эдс самоиндукции

В целях устранения пагубного влияния ЭДС самоиндукции применяются искрогасящие цепи, устанавливаемые параллельно контактам реле или параллельно нагрузке.

Не вдаваясь в физику переходных процессов рассмотрим наиболее действенные и широко применяемые искрогасящие цепи постоянного и переменного тока.

Цепи постоянного тока

Кремниевый диод включается параллельно индуктивной нагрузке, при замыкании контактов и в установившемся режиме не оказывает никакого воздействия на работу схемы.

При отключении нагрузки возникает напряжение самоиндукции, обратное по полярности рабочему напряжению, диод открывается и шунтирует индуктивную нагрузку.

Диоды наиболее эффективно предохраняют контакты реле от обгорания и являются лучшим решением, по сравнению с любыми другими схемами искрогашения. Такой способ применим и к сигнализаторам с транзисторным выходом.


Правила выбора обратного диода:

  • Рабочий ток и обратное напряжение диода должны быть сравнимы с номинальным напряжением и током нагрузки. Для нагрузок с рабочим напряжением до 250В DC и рабочим током до 5 А вполне подходит распространенный кремниевый диод 1N4007 с обратным напряжением 1000В DC и максимальным импульсным током до 20 А;
  • Выводы диода должны быть как можно короче;
  • Диод следует припаивать (привинчивать) непосредственно к индуктивной нагрузке, без длинных соединительных проводов – это улучшает ЭМС при процессах коммутации.

Цепи переменного и постоянного тока

RC-цепь является наиболее дешёвым и широко применяемым средством защиты цепей как переменного, так и постоянного тока.

В отличие от диодных схем, RC-цепи можно устанавливать как параллельно нагрузке, так и параллельно контактам реле. В некоторых случаях нагрузка физически недоступна для монтажа на ней искрогасящих элементов, и тогда единственным способом защиты контактов остается шунтирование контактов RC-цепями.


Расчет RC-цепи, подключаемой параллельно контактам реле:

Проще всего пользоваться универсальной номограммой. По известным значениям напряжения источника питания U и тока нагрузки I находят две точки на номограмме, после чего между точками проводится прямая линия, показывающая искомое значение сопротивления R.

Значение емкости С отсчитывается по шкале рядом со шкалой тока I. Номограмма дает разработчику достаточно точные данные, при практической реализации схемы необходимо будет подобрать ближайшие стандартные значения для резистора и конденсатора RC-цепи.

RC-цепь, подключаемая параллельно нагрузке:

Применяется там, где нежелательна или невозможна установка RC-цепи параллельно контактам реле. Для расчета предлагаются следующие ориентировочные значения элементов:

  • С = 0,5 1 мкф на 1 А тока нагрузки;
  • R = 0,5 1 Ом на 1 В напряжения на нагрузке или
  • R = 50100% от сопротивления нагрузки.

Приведенные значения R и С не являются оптимальными. Если требуется максимально полная защита контактов и реализация максимального ресурса реле, то необходимо провести эксперимент и опытным путем подобрать резистор и конденсатор, наблюдая переходные процессы с помощью осциллографа.

Для защиты выходных транзисторных каскадов сигнализаторов RC-цепь подключают параллельно нагрузке.

Источник: https://rusautomation.ru/stati/mery-po-zashite-kontaktov-rele-ot-povrezhdeniya-dugovymi-razryadami

Эдс самоиндукции катушки определяется по формуле. Что такое самоиндукция — объяснение простыми словами

что такое эдс самоиндукции

На данном уроке мы узнаем, как и кем было открыто явление самоиндукции, рассмотрим опыт, с помощью которого продемонстрируем это явление, определим, что самоиндукция — это частный случай электромагнитной индукции. В конце урока введем физическую величину, показывающую зависимость ЭДС самоиндукции от размеров и формы проводника и от среды, в которой находится проводник, т. е. индуктивность.

Генри изобретал плоские катушки из полосовой меди, с помощью которых добивался силовых эффектов, выраженных более ярко, чем при использовании проволочных соленоидов. Ученый заметил, что при нахождении в цепи мощной катушки ток в этой цепи достигает своего максимального значения гораздо медленнее, чем без катушки.

Рис. 2. Схема экспериментальной установки Д. Генри

На рис. 2 изображена электрическая схема экспериментальной установки, на основе которой можно продемонстрировать явление самоиндукции. Электрическая цепь состоит из двух параллельно соединенных лампочек, подключенных через ключ к источнику постоянного тока. Последовательно с одной из лампочек подключена катушка. После замыкания цепи видно, что лампочка, которая соединена последовательно с катушкой, загорается медленнее, чем вторая лампочка (рис. 3).

Рис. 3. Различный накал лампочек в момент включения цепи

При отключении источника лампочка, подключенная последовательно с катушкой, гаснет медленнее, чем вторая лампочка.

Почему лампочки гаснут не одновременно

При замыкании ключа (рис. 4) из-за возникновения ЭДС самоиндукции ток в лампочке с катушкой нарастает медленнее, поэтому эта лампочка загорается медленнее.

Рис. 4. Замыкание ключа

При размыкании ключа (рис. 5) возникающая ЭДС самоиндукции мешает убыванию тока. Поэтому ток еще некоторое время продолжает течь. Для существования тока нужен замкнутый контур. Такой контур в цепи есть, он содержит обе лампочки. Поэтому при размыкании цепи лампочки должны некоторое время светиться одинаково, и наблюдаемое запаздывание может быть вызвано другими причинами.

Рис. 5. Размыкание ключа

Рассмотрим процессы, происходящие в данной цепи при замыкании и размыкании ключа.

1. Замыкание ключа.

В цепи находится токопроводящий виток. Пусть ток в этом витке течет против часовой стрелки. Тогда магнитное поле будет направлено вверх (рис. 6).

Таким образом, виток оказывается в пространстве собственного магнитного поля. При возрастании тока виток окажется в пространстве изменяющегося магнитного поля собственного тока. Если ток возрастает, то созданный этим током магнитный поток также возрастает.

Как известно, при возрастании магнитного потока, пронизывающего плоскость контура, в этом контуре возникает электродвижущая сила индукции и, как следствие, индукционный ток.

По правилу Ленца, этот ток будет направлен таким образом, чтобы своим магнитным полем препятствовать изменению магнитного потока, пронизывающего плоскость контура.

То есть для рассматриваемого на рис. 6 витка индукционный ток должен быть направлен по часовой стрелке (рис. 7), тем самым препятствуя нарастанию собственного тока витка. Следовательно, при замыкании ключа ток в цепи возрастает не мгновенно благодаря тому, что в этой цепи возникает тормозящий индукционный ток, направленный в противоположную сторону.

2. Размыкание ключа

При размыкании ключа ток в цепи уменьшается, что приводит к уменьшению магнитного потока сквозь плоскость витка. Уменьшение магнитного потока приводит к появлению ЭДС индукции и индукционного тока. В этом случае индукционный ток направлен в ту же сторону, что и собственный ток витка. Это приводит к замедлению убывания собственного тока.

Вывод:при изменении тока в проводнике возникает электромагнитная индукция в этом же проводнике, что порождает индукционный ток, направленный таким образом, чтобы препятствовать любому изменению собственного тока в проводнике (рис. 8). В этом заключается суть явления самоиндукции. Самоиндукция — это частный случай электромагнитной индукции.

Рис. 8. Момент включения и выключения цепи

Формула для нахождения магнитной индукции прямого проводника с током:

где — магнитная индукция; — магнитная постоянная; — сила тока; — расстояние от проводника до точки.

Поток магнитной индукции через площадку равен:

ЭТО ИНТЕРЕСНО:  Почему при прохождении электрического тока проводник нагревается

где — площадь поверхности, которая пронизывается магнитным потоком.

Таким образом, поток магнитной индукции пропорционален величине тока в проводнике.

Для катушки, в которой — число витков, а — длина, индукция магнитного поля определяется следующим соотношением:

Магнитный поток, созданный катушкой с числом витков N, равен:

Подставив в данное выражение формулу индукции магнитного поля, получаем:

Отношение числа витков к длине катушки обозначим числом :

Получаем окончательное выражение для магнитного потока:

Из полученного соотношения видно, что значение потока зависит от величины тока и от геометрии катушки (радиус, длина, число витков). Величина, равная , называется индуктивностью:

Единицей измерения индуктивности является генри:

Следовательно, поток магнитной индукции, вызванный током в катушке, равен:

С учетом формулы для ЭДС индукции , получаем, что ЭДС самоиндукции равна произведению скорости изменения тока на индуктивность, взятому со знаком «-»:

Самоиндукция — это явление возникновения электромагнитной индукции в проводнике при изменении силы тока, протекающего сквозь этот проводник.

Электродвижущая сила самоиндукции прямо пропорциональна скорости изменения тока, протекающего сквозь проводник, взятой со знаком минус. Коэффициент пропорциональности называется индуктивностью, которая зависит от геометрических параметров проводника.

Проводник имеет индуктивность, равную 1 Гн, если при скорости изменения тока в проводнике, равной 1 А в секунду, в этом проводнике возникает электродвижущая сила самоиндукции, равная 1 В.

С явлением самоиндукции человек сталкивается ежедневно. Каждый раз, включая или выключая свет, мы тем самым замыкаем или размыкаем цепь, при этом возбуждая индукционные токи. Иногда эти токи могут достигать таких больших величин, что внутри выключателя проскакивает искра, которую мы можем увидеть.

Список литературы

  1. Мякишев Г.Я. Физика: Учеб. для 11 кл. общеобразоват. учреждений. — М.: Просвещение, 2010.
  2. Касьянов В.А. Физика. 11 кл.: Учеб. для общеобразоват. учреждений. — М.: Дрофа, 2005.
  3. Генденштейн Л.Э., Дик Ю.И., Физика 11. — М.: Мнемозина.
  1. Интернет-портал Myshared.ru ().
  2. Интернет-портал Physics.ru ().
  3. Интернет-портал Festival.1september.ru ().

Домашнее задание

  1. Вопросы в конце параграфа 15 (стр. 45) — Мякишев Г.Я. Физика 11 (см. список рекомендованной литературы)
  2. Индуктивность какого проводника равна 1 Генри?

Самоиндукцией называется наведение ЭДС в проводнике при изменении электрического тока в этом проводнике.

Когда подается напряжение на катушку электромагнита, ток возрастает не сразу. Он увеличивается постепенно. Нарастание тока тормозится возникшим напряжением, противоположным приложенному. Это напряжение – электродвижущая сила (ЭДС) самоиндукции. Значение ЭДС постепенно уменьшается, и ток в электромагните возрастает до номинального значения.

Взаимодействие электрического и магнитного полей – причина самоиндукции

Электрическое и магнитное поля взаимосвязаны: электрический ток или меняющееся электрическое поле создает магнитное поле.

В свою очередь, меняющееся магнитное поле создает электрическое поле.

Рассмотрим процессы в проводящем контуре, когда в нем меняется электрический ток (например, его включают или выключают).

  • В проводнике, помещенном в меняющееся магнитное поле, наводится ЭДС.
  • Если в проводнике меняется величина электрического тока – возникает меняющееся магнитное поле.
  • Меняющееся магнитное поле, созданное током в проводнике, наводит ЭДС самоиндукции в этом же проводнике.

Не во всех электрических цепях возникает эффект самоиндукции. Лампочка накаливания мгновенно вспыхивает при подаче тока, и мгновенно гаснет при его отключении, а в электромагните, на который подается и выключается постоянное напряжение, процессы растянуты во времени. У лампочки и электромагнита разная инерционность.

В механике мерой инерционности является масса: чтобы привести в движение массивный предмет, нужно прикладывать усилие в течение некоторого времени.

В электротехнике мерой инерционности является величина, названная индуктивностью. Она обозначается символом L . Единица измерения индуктивности – Генри (Гн), а также производные единицы: миллиГенри (мГн), микроГенри (мкГн) и так далее. Чем больше индуктивность цепи, тем дольше и мощнее протекают переходные процессы. Лампочка накаливания имеет очень малую индуктивность, а у электромагнита индуктивность большая.

В радиотехнике и электротехнике используются дроссели – детали, имеющие нормированные значения индуктивности.

На рисунке приведена схема опыта, демонстрирующего явление самоиндукции.

Источник: https://brandpol.ru/pomosch-yurista/eds-samoindukcii-katushki-opredelyaetsya-po-formule-chto-takoe.html

Самоиндукция простыми словами: определение, формулы, примеры

Явление электромагнитной индукции очень часто наблюдается в электротехнике. Взаимное влияние электрических и магнитных полей иногда приводит к интересным результатам. Самоиндукция – частный случай электромагнитной индукции.

Общеизвестно, что причиной порождения электрического тока является переменное магнитное поле. Именно этот принцип реализован в конструкциях современных генераторов. Природа самоиндукции также связана с электромагнетизмом, но это явление проявляется она по-другому.

Определение

Рассмотрим схему катушки, по обмоткам которой протекает электрический ток (рис. 1). Так как вокруг проводника, который находится под током, всегда существует связанное с ним магнитное поле, то силовые линии этого поля пронизывают плоскости витков. В результате такого взаимодействия соленоиды образуют собственное магнитное поле, магнитные линии которого замыкаются за его пределами.

Рис. 1. Магнитное поле катушки

Частным случаем катушки является замкнутый контур (один виток). В нём, как и в катушке, образуется собственное магнитное поле (см. рис. 2). Если ток постоянный, то в контуре никаких изменений не происходит.

Но при изменении параметров, например, в результате размыкания цепи, изменяется магнитный поток, создаваемый электрическим полем, что является причиной возникновения ЭДС индукции. Аналогичное изменение произойдёт и в случае замыкания цепи.

Изменение параметров магнитного поля вызывает появление вихревого электрического поля, что в свою очередь приводит к возбуждению индуктивной электродвижущей силы. Возникновение ЭДС индукции, в результате изменения ток в замкнутом контуре, называется самоиндукцией.

Магнитный поток, ограниченный поверхностью контура, меняется прямо пропорционально изменению тока, циркулирующего в нём.

Рис. 2. Явление самоиндукции

Направление вектора ЭДС самоиндукции не совпадает с направлением тока в период его возрастания (при замыкании цепи), но он сонаправлен с ним в период убывания (разъединения цепи). Такое действие проявляется в замедлении появления тока в соленоиде при замыкания цепи, или в его задержке на какое-то время после разрыва цепи.

Описанное явление можно наблюдать на опыте с лампочками, одна из которых подключена последовательно с индуктивностью (см. рис. 3).

Рис. 3. Схема опыта с лампочками

Как видно на рисунке слева, ток от источника питания, проходящий через лампочку 2, при замыкании контактов встретит сопротивление вихревых токов, поскольку они противоположно направлены. Поэтому зажигание этой лампочки произойдёт с задержкой.

На время включения лампочки 1 вихревые токи повлияют, но сила тока в её цепи уменьшится после зажигания лампы 2. При отключении цепи от источника питания произойдёт обратный процесс: лампочка в цепи индуктивности некоторое время будет медленно угасать, а вторая лампа потухнет сразу после разъединения контактов.

График на рисунке 4 красноречиво объясняет эффект задержки.

Рис. 4. Иллюстрация задержки изменения тока в цепи индуктивности

Обратите внимание на нелинейность изменения силы тока по времени.

Аналогичные процессы происходят в цепи, состоящей из одной катушки. На рисунке 5 изображена такая схема и график изменения силы тока.

Рис. 5. Возникновение самоиндукции

Остаётся добавить, что скорость изменение величины ЭДС зависит от количества витков соленоида. Чем больше витков, тем больше влияние вихревых токов, на параметры цепи.

В случае с переменным током амплитуда ЭДС самоиндукции пропорциональна амплитуде синусоиды питания, её частоте и индуктивности катушки.

Синусоидальный ток, проходя через катушку индуктивности, сдвигается по фазе на величину π/2. Именно этот сдвиг является причиной отставания собственного тока катушки от тока, вырабатываемого источником питания.

ЭТО ИНТЕРЕСНО:  Скачки напряжения в электросети что делать

Формулы

Собственный магнитный поток контура (Ф) связан прямо пропорциональной зависимостью с индуктивностью (L) этого контура и величиной тока в нём (i). Данная зависимость выражается формулой: Ф = L×i. Коэффициент пропорциональности L принято называть коэффициентом самоиндукции или же просто индуктивностью контура.

При этом индуктивность контура пребывает в зависимости от его геометрии, площади плоскости ограниченной витком и магнитной проницаемости окружающей среды. Но этот коэффициент не зависит от силы тока в контуре. Если же форма, линейные размеры и магнитная проницаемость не изменяются, то для определения величины индуктивной ЭДС применяется формула:

где Eсамоинд. – ЭДС самоиндукции, Δi – изменение силы тока за время Δt.

Примеры использования на практике

Явление самоиндукции нашло широкое практическое применение. Автолюбители прекрасно знают, что такое катушка зажигания. Без неё карбюраторный двигатель не запустится.

Работает этот важный узел следующим образом:

  1. На катушку с большой индуктивностью подаётся бортовое напряжение 12 В.
  2. Электрическая цепь резко обрывается специальным прерывателем.
  3. Накопленная энергия самоиндукции поступает по высоковольтным проводам на свечу и образует на её электродах мощную искру.
  4. Искровой разряд зажигает топливную смесь, приводя в движение поршень.

В современных автомобилях разрыв цепи выполняет электроника, но суть от этого не меняется – для образования искры по-прежнему используется энергия самоиндукции.

Мы уже упоминали о сетевых фильтрах, в которых используется явление самоиндукции. RL цепочка реагирует на любое изменение параметров. При его возрастании она задерживает во времени пиковые скачки и заполняет собственными вихревыми токами провалы. Таким образом, происходит сглаживание напряжения в электрически цепях.

В блоках питания электронной аппаратуры таким же способом убирают:

  • шумы:
  • пульсации;
  • нежелательные частоты.

Самоиндукция дросселей используется в люминесцентных лампах для розжига электродов. После срабатывания стартера происходит разрыв контактов, в результате чего в дросселе наводится ЭДС самоиндукции. Энергия дросселя разжигает дугу на электродах, и люминесцентная лампа начинает светиться.

Перечисленные примеры демонстрируют полезное применение самоиндукции. Однако, как это всегда бывает, индуктивная ЭДС может наносить вред. При разъединении контактов выключателей, нагрузкой которых являются цепи с большой индуктивностью, возможны дуговые разряды. Они разрушают контакты, замедляют время защиты и т.п. С целью снижения риска от негативных влияний самоиндукции автоматические выключатели оборудуют дугогасительными камерами.

В таких случаях приходится принимать меры для нейтрализации энергии ЭДС самоиндукции. Ещё большая потребность в рассеянии энергии самоиндукции возникает в полупроводниковых ключах, чувствительных к пробоям.

В промышленности и энергетике самоиндукция является серьёзной проблемой. При отключении нагруженных линий ЭДС самоиндукции может достигать опасных для жизни величин. Это требует дополнительных затрат на принятие мер предосторожности. В частности, необходимо устанавливать на линиях устройства, препятствующие молниеносному размыканию цепи.

в помощь

Источник: https://www.asutpp.ru/samoinduktsiya.html

Что такое самоиндукция — объяснение простыми словами

«Самоиндукция останавливает рост напряжения в индуктивных цепях». Если ваша работа или увлечение связаны с электричеством вы наверняка слышали подобные высказывания. На самом деле это явление присуще индуктивным цепям, как в явном виде, например, катушек, так и в неявном, такие как паразитные параметры кабеля. В этой статье мы простыми словами расскажем о том, что такое самоиндукция и где она применяется.

Трансформатор и взаимоиндукция

Если расположить две катушки в непосредственной близости, например, на одном сердечнике, то будет наблюдаться явление взаимоиндукции. Пропустим переменный ток по первой, тогда её переменный поток будет пронизывать витки второй и на её выводах появится ЭДС.

Это ЭДС будет зависеть от длины провода, соответственно количества витков, а также от величины магнитной проницаемости среды. Если их расположить просто около друг друга — ЭДС будет низким, а если взять сердечник из магнитомягкой стали – ЭДС будет значительно больше. Собственно, так и устроен трансформатор.

Интересно: такое взаимное влияние катушек друг на друга называют индуктивной связью.

Польза и вред

Если вам понятна теоретическая часть, стоит рассмотреть где применяется явление самоиндукции на практике. Рассмотрим на примерах того, что мы видим в быту и технике. Одно из полезнейших применений – это трансформатор, принцип его работы мы уже рассмотрели. Сейчас встречаются все реже, но ранее ежедневно использовались люминесцентные трубчатые лампы в светильниках. Принцип их работы основан на явлении самоиндукции. Её схемы вы можете увидеть ниже.

После подачи напряжения ток протекает по цепи: фаза — дроссель — спираль — стартер — спираль — ноль.

Или наоборот (фаза и ноль). После срабатывания стартера, его контакты размыкаются, тогда дроссель (катушка с большой индуктивностью) стремится поддержать ток в том же направлении, наводит ЭДС самоиндукции большой величины и происходит розжиг ламп.

Аналогично это явление применяется в цепи зажигания автомобиля или мотоцикла, которые работают на бензине. В них в разрыв между катушкой индуктивности и минусом (массой) устанавливают механический (прерыватель) или полупроводниковый ключ (транзистор в ЭБУ).

Этот ключ в момент, когда в цилиндре должна образоваться искра для зажигания топлива, разрывает цепь питания катушки.

Тогда энергия, запасенная в сердечнике катушки, вызывает рост ЭДС самоиндукции и напряжение на электроде свечи возрастает до тех пор, пока не наступит пробой искрового промежутка, или пока не сгорит катушка.

В блоках питания и аудиотехнике часто возникает необходимость убрать из сигнала лишние пульсации, шумы или частоты. Для этого используются фильтры разных конфигурации. Один из вариантов это LC, LR-фильтры. Благодаря препятствию роста тока и сопротивлению переменного тока, соответственно, возможно добиться поставленных целей.

Вред ЭДС самоиндукции приносит контактам выключателей, рубильников, розеток, автоматов и прочего. Вы могли заметить что, когда вытаскиваете вилку работающего пылесоса из розетки, очень часто заметна вспышка внутри неё. Это и есть сопротивление изменению тока в катушке (обмотке двигателя в данном случае).

В полупроводниковых ключах дело обстоит более критично – даже небольшая индуктивность в цепи может привести к их пробою, при достижении пиковых значений Uкэ или Uси. Для их защиты устанавливают снабберные цепи, на которых и рассеивается энергия индуктивных всплесков.

Заключение

Подведем итоги. Условиями возникновения ЭДС самоиндукции является: наличие индуктивности в цепи и изменение тока в нагрузке. Это может происходить как в работе, при смене режимов или возмущающих воздействиях, так и при коммутации приборов.

Это явление может нанести вред контактам реле и пускателей, так как приводит к образованию дуги при размыкании индуктивных цепей, например, электродвигателей.

Чтобы снизить негативное влияние большая часть коммутационной аппаратуры оснащается дугогасительными камерами.

В полезных целях явление ЭДС используется довольно часто, от фильтра для сглаживания пульсаций тока и фильтра частот в аудиоаппаратуре, до трансформаторов и высоковольтных катушек зажигания в автомобилях.

Напоследок рекомендуем просмотреть полезное видео по теме, на которых кратко и подробно рассматривается явление самоиндукции:

Надеемся, теперь вам стало понятно, что такое самоиндукция, как она проявляется и где ее можно использовать. Если возникли вопросы, задавайте их в комментариях под статьей!

Материалы по теме:

Источник: https://samelectrik.ru/chto-takoe-samoindukciya.html

Понравилась статья? Поделиться с друзьями:
220 вольт
Как сделать подсветку шкафов на кухне

Закрыть