Что такое емкостной ток

Новости Электротехники №4(82) | Релейная защита

что такое емкостной ток

В последнее время в России все большее распространение получают сети 6–10 кВ с низкоомным резистивным заземлением нейтрали. Особенностью данных сетей является действие защиты от однофазных замыканий на землю поврежденного фидера на отключение.
Сложность эксплуатации заключается в определении тока срабатывания защит от замыкания на землю и обеспечении требуемой селективности работы защит. Свои предложения высказывают наши авторы из Республики Коми.

Однофазные замыкания на землю в сетях 6–10 кв с резистивно-заземленной нейтралью

расчет уставок релейной защиты

Евгений Демиденко, начальник отдела ЭТО ИТЦ
Алексей Солончев, ведущий инженер отдела ЭТО ИТЦ
Виктор Гудым, ведущий инженер ГПТО ИТЦ ООО «Газпром трансгаз Ухта»,

г. Ухта

ОПРЕДЕЛЕНИЕ ТОКА СРАБАТЫВАНИЯ ЗАЩИТЫ ОТ ОДНОФАЗНЫХ ЗАМЫКАНИЙ НА ЗЕМЛЮ

Рассмотрим схему сети 10 кВ (рис. 1), особенностью которой является наличие электростанции собственных нужд (ЭСН) 10 кВ, работающей параллельно с энергосистемой, что влечет за собой необходимость скорейшей ликвидации однофазных замыканий в сети и, как следствие, перенапряжений, особенно опасных для изоляции электрических машин.

Рис. 1. Пример схемы сети 10 кВ

В нормальном режиме работы в ЗРУ-1 включены только один ввод от энергосистемы (в нашем случае это ввод-1, яч. № 1), секционный выключатель (СВ) 10 кВ, трансформатор заземления нейтрали (ТЗН). Потребители ЗРУ-2 получают питание по ВЛ 10 кВ № 1, 2; СВ 10 кВ ЗРУ-2 отключен.

Также от шин ЗРУ-1 отходит ВЛ 10 кВ № 4 протяженностью 52 км, имеющая кабельные вставки общей протяженностью 3 км (2,6 км – кабельная линия типа СКл-3х150 и 0,4 км – NXCMK-3х150) и 4 выключателя, установленных в линии и равномерно удаленных (около 10 км) друг от друга.

К шинам 10 кВ ЗРУ-1 и ЗРУ-2 подключены трансформаторные подстанции с трансформаторами мощностью 400–1000 кВА (от 4 до 10 присоединений на секцию) и суммарной длиной кабельных линий 3,2 км для 1-й и 2-й секций шин (СШ) ЗРУ-1; 4,85 км и 4,45 км соответственно для 1-й и 2-й СШ ЗРУ-2.

Релейная защита и автоматика (РЗиА) всех электроустановок выполнена на цифровых терминалах релейной защиты и автоматики (ЦРЗА).

ЕМКОСТНЫЕ ТОКИ

Емкостные токи воздушных линий присоединений рассчитываем по формуле из [1]:

Iсвл = С0л · л · ω · Uф.ном,

где С0л – удельная емкость ЛЭП на землю (Ф/км) для ВЛ с изолированными проводами типа СИП-3, расположенными на опоре по вершинам равностороннего треугольника при расстоянии между фазами 400 мм (принимаем 0,024 мкФ/км);
л – длина ВЛ, км; ω = 314 рад/с;

Uф.ном – номинальное фазное напряжение сети, В (принимаем 5700 В).

Емкостные токи кабельных линий присоединений Iскл определяем по формуле:

Iскл = IС0кл · л,

где IС0кл – удельный емкостный ток кабельной линии на землю, А/км (по данным завода-изготовителя [2], для КЛ сечением 150 мм2 он составляет 2 А/км, сечением 95 мм2 – 1,7 А/км, сечением 70 мм2 – 1,5 А/км.

Для КЛ типа СКл-3х150 удельный емкостный ток составляет 2,94 А/км).

Собственные емкостные токи присоединений ЗРУ-1 составляют:

  • для ВЛ 10 кВ № 1 – 8,13 А;
  • для ВЛ 10 кВ № 2 – 7,525 А;
  • для ВЛ 10 кВ № 3 – 2,65 А;
  • для ВЛ 10 кВ № 4 – 10,55 А;
  • для присоединения ЗРУ-1, кроме ВЛ 10 кВ № 1, 2, 3, 4, – 4,8 А.

ОПЫТ ОДНОФАЗНОГО ЗАМЫКАНИЯ НА ЗЕМЛЮ

Так как расчет однофазных токов замыкания на землю произведен по эмпирическим формулам и носит приблизительный характер, в представленной сети 10 кВ был выполнен опыт однофазного замыкания на землю.

В табл. 1 представлены расчетные и измеренные величины однофазных токов замыкания на землю в рассматриваемой сети.

Таблица 1. Расчетные и измеренные величины однофазных токов замыкания на землю

Наименование присоединения Расчетный емкостный ток, А Измеренный емкостный ток, А Разница между расчетными и измеренными токами, %
ВЛ 10 кВ № 1 8,13 8,84 8
ВЛ 10 кВ № 2 7,525 8,19 8
ВЛ 10 кВ № 3 2,65 2,77 4
ВЛ 10 кВ № 4 10,55 7,41 30

Исходя из характеристик устройства частичного заземления нейтрали трансформатора [3], принимаем, что ток однофазного замыкания в сети с ТЗН составляет порядка 35–40 А.

Токи срабатывания защит рассчитываем, исходя из отстройки защит от собственного емкостного тока присоединения, по формуле из [4]:

Iс.з = kотс · Iс ,

где kотс – коэффициент отстройки (принимаем равным 1,3 для ЦРЗА);
Iс – собственный емкостный ток присоединения.

Коэффициент отстройки (kотс) включает в себя коэффициент надежности (kн) и коэффициент отстройки от бросков емкостного тока в переходных процессах (kбр) [5]. При анализе осциллограмм и переходных процессов токов ОЗЗ в ЦРЗА (в качестве ЦРЗА применены SEPAM) коэффициент отстройки от бросков емкостного тока (kбр) можно принять за 1 и не учитывать при расчете токов срабатывания защит.

ТЗН обеспечивает определенную фиксированную величину тока замыкания на землю в точке замыкания независимо от параметров сети, а отстройка защиты фидеров выполняется от собственных емкостных токов присоединений, протекающих в ТТНП неповрежденных присоединений при однофазном замыкании в сети.

СОГЛАСОВАНИЕ ЗАЩИТ ПО ТОКУ С НИЖЕСТОЯЩИМИ ЗАЩИТАМИ

Для ВЛ 10 кВ № 1 и № 2 при расчете уставки срабатывания по току учитываем суммарный емкостный ток обоих присоединений, так как ЗРУ-2 может получать питание по одной линии с включенным СВ 10 кВ ЗРУ-2. Данные расчетов токов и уставок сведены в табл. 2.

Таблица 2. Данные расчетов токов и уставок

Наименование присоединения Емкостный ток, Iс, А (измеренный) Ток срабатывания защиты, Iс.з, А Коэффициент чувствительности защит kч к току замыкания 35 А
ВЛ 10 кВ № 1 (включен СВ 10 кВ ЗРУ-2 и отключена ВЛ № 2) 17,03 22,14 1,58
ВЛ 10 кВ № 2 (включен СВ 10 кВ ЗРУ-2 и отключена ВЛ № 1) 17,03 22,14 1,58
ВЛ 10 кВ № 3 2,77 3,6 9,7
ВЛ 10 кВ № 4 7,41 9,6 3,6

Для отходящих кабельных линий 10 кВ ЗРУ-1 (кроме линий 10 кВ № 1, 2, 3, 4) и ЗРУ-2 отстраиваем ток срабатывания ОЗЗ от емкостного тока самой длинной линии 10 кВ и принимаем равным 3 А. При этом необходимо учитывать возможный ток небаланса в токовых цепях защит.

Так как оценить токи небаланса и отстроиться от них расчетными методами не представляется возможным, то при каждом ложном срабатывании защиты необходимо проанализировать причины работы защиты от ОЗЗ и выполнить изменения токов срабатывания или выявить ошибки в монтаже ТТ защит от ОЗЗ.

ОПРЕДЕЛЕНИЕ ВРЕМЕНИ СРАБАТЫВАНИЯ ЗАЩИТ ОТ ОДНОФАЗНЫХ ЗАМЫКАНИЙ НА ЗЕМЛЮ

Для выполнения условий селективности работы защит от ОЗЗ было выполнено согласование по времени.

На отходящих линиях 10 кВ ЗРУ-1 (кроме линий 10 кВ № 1, 2, 3, 4) и ЗРУ-2 время работы защиты принимаем равным 0,1 сек.

Для ВЛ 10 кВ № 1,2 время срабатывания защиты от ОЗЗ рассчитываем, исходя из рекомендованной для микропроцессорных защит ступени селективности Δt = 0,25 сек. Время срабатывания защиты от ОЗЗ для ВЛ 10 кВ № 1, 2 составит 0,35 сек.

Для ВЛ 10 кВ № 3, с учетом обеспечения селективности действия защит (в пределах 0,25–0,35 сек.) на 4-х выключателях, установленных на линии, время срабатывания защиты от ОЗЗ принимаем равным 1,1 сек.

ПАРАМЕТРЫ И ЗАЩИТЫ ТРАНСФОРМАТОРОВ РЕЗИСТИВНОГО ЗАЗЕМЛЕНИЯ НЕЙТРАЛИ

Для резистивного заземления нейтрали применен шкаф типа КУН-70М со следующими характеристиками [6]:

  • номинальная мощность трансформатора 63 кВА;
  • активное сопротивление блока резисторов 150 Ом;
  • номинальная мощность блока резисторов 21 кВт;
  • допустимые токи при однофазном замыкании на землю не более 3 А длительно, 5 А в течение 3 ч, 40 А в течение 5 сек.

С учетом допустимой длительности 5 сек. протекания тока замыкания на землю величиной в 40 А и согласования по току с защитами отходящих линий, для обеспечения селективности действия защит от ОЗЗ принимаем уставки защит: Iс.з = 25 А, Тс.з = 1,4 сек. с действием на отключение СВ 10 кВ ЗРУ-1 и Тс.з = 1,7 сек. с действием на отключение своего выключателя.

Карта уставок защит от ОЗЗ представлена на рис. 2.

Рис. 2. Карта уставок защит от ОЗЗ

ОРГАНИЗАЦИЯ ЗАЩИТ ОТ ОЗЗ ПРИ НЕДОСТАТОЧНОЙ ЧУВСТВИТЕЛЬНОСТИ

При больших собственных емкостных токах замыкания на землю присоединений могут возникнуть проблемы с обеспечением чувствительности защит к токам ОЗЗ. Из данного положения можно выйти, согласовав работу защит по времени срабатывания, при этом не ставя перед собой задачу отстройки защит от емкостных токов своих присоединений.

Допустим, что защиты от ОЗЗ ВЛ № 1, 2 не могут быть отстроены от емкостных токов своих присоединений по условию чувствительности к току замыкания (kч < 1,5) и пускаются при наличии замыкания в любой точке рассматриваемой сети 10 кВ. В данном случае необходимо отстроить работу защиты от максимального времени срабатывания защиты отходящей линии ЗРУ. В нашем случае это ВЛ № 3, 4, где Тс.з = 1,1 сек.

Исходя из вышеизложенного, принимаем время срабатывания защит от ОЗЗ ВЛ № 1, 2: Тс.з = 1,4 сек., а время срабатывания защиты от ОЗЗ трансформатора заземления нейтрали увеличиваем соответственно до Тс.з = 1,7 сек. с действием на отключение СВ 10 кВ ЗРУ-1 и Тс.з = 2,0 сек. с действием на отключение своего выключателя.

Если по каким-либо причинам нет возможности увеличить время работы защит от ОЗЗ, то необходимо применять направленные защиты от ОЗЗ. При этом особое внимание следует уделить качеству и правильности монтажа ТТНП, так как проблематично проверить фазировку защиты первичными токами и напряжением. Если есть сомнение в правильности фазировки защиты от ОЗЗ, то необходимо провести опыт однофазного замыкания на землю.

ВЫВОДЫ

  1. При расчете величин токов однофазного замыкания на  землю необходимо иметь полные данные о рассчитываемой сети. При сомнениях нужно провести опыт ОЗЗ для определения реальных токов ОЗЗ присоединений сети.
  2. Требуется уделять особое внимание монтажу ТТНП. Монтаж следует выполнять в полном соответствии с указаниями производителя.
  3. Максимальное время срабатывания защит от ОЗЗ зависит от времени допустимого действия токов замыкания шкафов резистивного заземления нейтрали.

ЛИТЕРАТУРА

  1. Шуин В.А., Гусенков А.В. Защиты от замыканий на землю в электрических сетях 6–10 кВ: Библиотечка электротехника. Приложение к журналу «Энергетик» за 2001 г.
  2. Кабели с изоляцией из сшитого полиэтилена на напряжение 6–35 кВ Nexans. Технические характеристики.
  3. Абрамович Б.Н., Гульков В.М., Полищук В.В., Сергеев А.М., Шийко А.П. Расчет и проектирование воздушных линий с покрытыми изоляционными проводами. Изд-во «Нестор», 2003.
  4. Шабад М.А. Расчеты релейной защиты и автоматики распределительных сетей. СПб.: ПЭИПК, 2010.
  5. Булычев А.В. Релейная защита в распределительных электрических сетях. М.: ЭНАС, 2011.
  6. Шкаф резистивного заземления нейтрали КУН-70. Руководство по эксплуатации.

Источник: http://www.news.elteh.ru/arh/2013/82/04.php

Расчет емкостного тока сети: как компенсировать емкостные токи

что такое емкостной ток

В электротехнике существует такое понятие как емкостный ток, более известный в качестве емкостного тока замыкания на землю в электрических сетях. Данное явление возникает при повреждении фазы, в результате чего возникает так называемая заземляющая дуга.

Для того чтобы избежать серьезных негативных последствий, необходимо своевременно и правильно выполнять расчет емкостного тока сети. Это позволит уменьшить перенапряжение в случае повторного зажигания дуги и создаст условия для ее самостоятельного угасания.

Что такое емкостный ток

Емкостный ток возникает как правило на линиях с большой протяженностью. В этом случае земля и проводники работают аналогично обкладкам конденсатора, способствуя появлению определенной емкости. Поскольку напряжение в ЛЭП обладает переменными характеристиками, это может послужить толчком к его появлению. В кабельных линиях, напряжением 6-10 киловольт, его значение может составить 8-10 ампер на 1 км протяженности.

В случае отключения линии, находящейся в ненагруженном состоянии, величина емкостного тока может достигнуть нескольких десятков и даже сотен ампер. В процессе отключения, когда наступает момент перехода тока через нулевое значение, напряжение на расходящихся контактах будет отсутствовать. Однако, в следующий момент вполне возможно образование электрической дуги.

Если значение емкостного тока не превышает 30 ампер, это не приводит к каким-либо серьезным повреждениям оборудования в зоне опасных перенапряжений и замыканий на землю. Электрическая дуга, появляющаяся на месте повреждения, достаточно быстро гаснет с одновременным появлением устойчивого замыкания на землю. Все изменения емкостного тока происходят вдоль электрической линии, в направлении от конца к началу.

Величина этих изменений будет пропорциональна длине линии.

Выбираем электроды для сварки инвертором

Для того чтобы уменьшить ток замыкания на землю, в сетях, напряжением от 6 до 35 киловольт, осуществляется компенсация емкостного тока. Это позволяет снизить скорость восстановления напряжения на поврежденной фазе после гашения дуги. Кроме того, снижаются перенапряжения в случае повторных зажиганий дуги. Компенсация выполняется с применением дугогасящих заземляющих реакторов, имеющих плавную или ступенчатую регулировку индуктивности.

Настройка дугогасящих реакторов выполняется в соответствии с током компенсации, величина которого равна емкостному току замыкания на землю. При настройке допускается использование параметров излишней компенсации, когда индуктивная составляющая тока будет не более 5 ампер, а степень отклонения от основной настройки – 5%.

Выполнение настройки с недостаточной компенсацией допустимо лишь в том случае, когда мощность дугогасящего реактора является недостаточной. Степень расстройки в этом случае не должна превышать 5%. Главным условием такой настройки служит отсутствие напряжения смещения нейтрали, которое может возникнуть при несимметричных емкостях фаз электрической сети – при обрыве проводов, растяжке жил кабеля и т.д.

Для того чтобы заранее предупредить возникновение аварийных ситуаций и принять соответствующие меры, необходимо рассчитать емкостный ток на определенном участке. Существуют специальные методики, позволяющие получить точные результаты.

ЭТО ИНТЕРЕСНО:  Что такое опс в электрике

Пример расчета емкостного тока сети

Значение емкостного тока, возникающего в процессе замыкания фазы на землю, определяется лишь величиной емкостного сопротивления сети. По сравнению с индуктивными и активными сопротивлениями, емкостное сопротивление обладает более высокими показателями. Поэтому первые два вида сопротивлений при расчетах не учитываются.

Образование емкостного тока удобнее всего рассматривать на примере трехфазной сети, где в фазе А произошло обычное замыкание. В этом случае величина токов в остальных фазах В и С рассчитывается с помощью следующих формул:

Модули токов в этих фазах Iв и Iс, учитывая определенные допущения С = СА = СВ = СС и U = UА = UВ = UС можно вычислить при помощи еще одной формулы: Значение тока в земле состоит из геометрической суммы токов фаз В и С.

Формула целиком будет выглядеть следующим образом:  При проведении практических расчетов величина тока замыкания на землю может быть определена приблизительно по формуле: , где Uср.ном. – является фазным средненоминальным напряжением ступени, N – коэффициент, а l представляет собой суммарную длину воздушных и кабельных линий, имеющих электрическую связь с точкой замыкания на землю (км).

Оценка, полученная с помощью такого расчета, указывает на независимость величины тока от места замыкания. Данная величина определяется общей протяженностью всех линий сети.

Как компенсировать емкостные токи замыкания на землю

Работа электрических сетей, напряжением от 6 до 10 киловольт, осуществляется с изолированной или заземленной нейтралью, в зависимости от силы тока замыкания на землю. Во всех случаях в схему включаются дугогасящие катушки. Нейтраль заземляется с помощью дугогасящих катушек, для того чтобы компенсировать токи замыкания на землю. Когда возникает однофазное замыкание на землю, работа всех электроприемников продолжается в нормальном режиме, а электроснабжение потребителей не прерывается.

Значительная протяженность городских кабельных сетей приводит к образованию в них большой емкости, поскольку каждый кабель является своеобразным конденсатором.

В результате, однофазное замыкание в подобных сетях, может привести к увеличению тока на месте повреждения до нескольких десятков, а в некоторых случаях – и сотен ампер. Воздействие этих токов приводит к быстрому разрушению изоляции кабеля.

Из-за этого, в дальнейшем, однофазное замыкание становится двух- или трехфазным, вызывая отключение участка и прерывая электроснабжение потребителей. В самом начале возникает неустойчивая дуга, постепенно превращающаяся в постоянное замыкание на землю.

Передача электроэнергии на расстоянии

Когда ток переходит через нулевое значение, дуга сначала пропадает, а затем появляется вновь. Одновременно на неповрежденных фазах возникает повышение напряжения, которое может привести к нарушению изоляции на других участках. Для погашения дуги в поврежденном месте, необходимо выполнить специальные мероприятия по компенсации емкостного тока. С этой целью к нулевой точке сети подключается индуктивная заземляющая дугогасящая катушка.

Схема включения дугогасящей катушки, изображенная на рисунке, состоит из заземляющего трансформатора (1), выключателя (2), сигнальной обмотки напряжения с вольтметром (3), дугогасящей катушки (4), трансформатора тока (5), амперметра (6), токового реле (7), звуковой и световой сигнализации (8).

Конструкция катушки состоит из обмотки с железным сердечником, помещенной в кожух, наполненный маслом. На главной обмотке имеются ответвления, соответствующие пяти значениям тока для возможности регулировки индуктивного тока. Один из выводов включается в нулевую точку обмотки трансформатора, соединенной звездой. В некоторых случаях может использоваться специальный заземляющий трансформатор, а соединение вывода главной обмотки осуществляется с землей.

Таким образом, для обеспечения безопасности выполняется не только расчет емкостного тока, но и проводятся мероприятия по его компенсации с помощью специальных устройств. В целом это дает хорошие результаты и обеспечивает безопасную эксплуатацию электрических сетей.

Источник: https://electric-220.ru/news/raschet_emkostnogo_toka_seti/2016-10-28-1099

Определение емкостного тока замыкания на землю | Заземление нейтрали в высоковольтных системах

что такое емкостной ток

Подробности Категория: Подстанции

Глава восьмая
РАСЧЕТ И ПРОЕКТИРОВАНИЕ ДУГОГАСЯЩИХ АППАРАТОВ

1. ОПРЕДЕЛЕНИЕ ЕМКОСТНОГО ТОКА ЗАМЫКАНИЯ НА ЗЕМЛЮ Существующие точные методы расчета емкостных токов замыкания на землю сложны и неудобны для применения к практическим расчетам. Основные зависимости были изложены в § 3 и 4 гл. 1 и применены для двухцепных линий (см. § 5.1 гл. 6).

Для расчетов необходимы данные о расположении проводов и тросов относительно друг друга и земли. Петерсен [Л. 1] предлагает употреблять эффективную высоту провода над землей, которую можно получить как разность средней высоты провода на опоре Н и произведения коэффициента k на максимальную стрелу провеса.

Значения коэффициента k даны в табл. 42. Практически можно использовать среднюю величину k= 0,7. Выражения для потенциальных коэффициентов рii и рiк, данные в формулах (16), содержат натуральные логарифмы.

В практических расчетах более удобно применять десятичные логарифмы, а полученные величины корректировать умножением на числовые величины 0,04826 или 0,07766 соответственно для емкостей в микрофарадах на километр или милю.

В действительности не все величины Q, полученные из решения уравнений, имеют практический интерес. Заряды тросов не нужны, так как они только показывают, что по тросам протекает пропорциональный этим зарядам емкостный ток замыкания на землю.

Таблица 42а
На основании этих данных можно вычислить потенциальные коэффициенты, которые определены соотношениями (16), и составить систему уравнений по типу (15), связывающих потенциалы проводов U с их зарядами Q. Линейная зависимость между U и Q дает возможность использовать принцип наложения, так что уравнения могут быть применены для определения только величин нулевой последовательности.

Потенциалы фазных проводов равны потенциалу нейтрали, потенциалы тросов равны нулю, а потенциалы изолированных проводов являются неизвестными. Допускается, что неизвестные заряды проводов, находящихся под напряжением, распределены между ними равномерно (однако это допущение несправедливо при строгом анализе). Заряды тросов также неизвестны, а заряды изолированных проходов известны и равны нулю.

Задача заключается в нахождении емкостных токов основной частоты, которые являются произведением зарядов Q и ω=2πf. Поэтому в каждом отдельном случае необходимо решать систему уравнений (15), которая дает неизвестные Q в зависимости от известных U. Порядок решения станет ясным из двух числовых примеров следующих двух параграфов.

Однако такие опыты могут быть недостаточны для получения точных величин. В § 1.2.1 гл.

6 было сказано, что при однофазных замыканиях в системе с изолированной нейтралью образуются составляющие обратной последовательности, которые при отсутствии демпферных обмоток приводят к возникновению высших гармоник.

Ток замыкания содержит большие высшие гармоники, в особенности если опыты протекают при малой нагрузке. В этих случаях величина тока замыкания значительно больше, чем величина составляющей основной частоты, на которую должны быть настроены компенсирующие устройства [Л. 10].

Непосредственные измерения

В существующих системах с изолированной нейтралью ток замыкания на землю может быть определен из опыта путем осуществления искусственного замыкания одной фазы на землю.

Опыт может быть проделан на отходящей линии или на секции шин с использованием масляного выключателя для включения и отключения замыкания.
Между фазой и землей включается трансформатор тока с подходящим коэффициентом трансформации; на вторичную сторону включаются реле и амперметр.

Реле отстраивается от ожидаемого тока замыкания на землю, но немедленно действует на отключение, если разовьется двойное замыкание на землю.

Рис. 287. Кривые для ориентировочного определения емкостного тока замыкания на землю.

Мы видели (см. § 1.2 гл. 6), что в компенсированных системах составляющие обратной последовательности практически отсутствуют; емкостный ток замыкания имеет хорошую синусоидальную форму. Остаточный ток замыкания содержит небольшую основную составляющую и очень небольшие высшие гармоники.

В некомпенсированных системах результат измерения тока замыкания может также зависеть от возрастаний напряжения и тока основной частоты, которые происходят благодаря наличию сосредоточенных индуктивностей на пути емкостного тока (например, благодаря тому, что основная часть емкостного тока протекает в кабельный участок через высоковольтные линии, реакторы и т. п.).

Такой случай был описан в § 10.10.1 гл 2. Метод непосредственного измерения является основным только для сравнительно малых систем.

Изменение емкостного тока и тока утечки в течение года

Незначительные изменения в величине емкостного тока замыкания могут происходить за счет изменения расстояния от провода до земли [Л. 11]. Рост растений в летнее время может быть причиной незначительного возрастания емкостного тока замыкания. Такого же эффекта можно ожидать при глубоком снеге. Так, в итальянской системе 130  кВ [Л.

12] снег толщиной 40 см, изменив эффективную высоту провода на 2,5%, вызвал увеличение емкости на землю на 0,5%. В этой же системе наблюдали различные другие явления. Увеличение диаметра провода за счет сильного инея приводило к увеличению емкости на 0,6—1,8%. Было замечено, что увеличению емкости на 0,6—0,7% соответствовало понижение окружающей температуры на KFC.

С другой стороны, было выявлено, что изменения в стреле провеса летом и зимой равны в среднем 2% при максимуме 6%. Все это наводит на мысль, что наблюдаемые изменения емкости являются результатом влияния нескольких факторов. В той же системе было обращено внимание на изменения тока утечки летом и зимой. Кривые, показывающие, изменения тока утечки, были даны в § 7 гл. 5.

Ясно, что эта составляющая тока замыкания на землю не может быть рассчитана с достаточной точностью. В табл. 46 приведены наблюдавшиеся изменения токов утечки высоковольтных линий; изменения взяты по отношению к току при проводимости утечки 3,1·10 (некоторая

средняя проводимость, составленная с учетом различных утечек отдельных фаз линии).

Таблица 46

Источник: https://leg.co.ua/arhiv/podstancii/zazemlenie-neytrali-v-vysokovoltnyh-sistemah-65.html

Понятие и расчет тока замыкания на землю

Такое явление, как растекание тока при замыкании на землю одного из фазных проводников, возникает вследствие его случайного соприкосновения с грунтом. К этому же типу внештатных ситуаций следует отнести и снижение изоляционных характеристик защитной оболочки кабеля, проложенного в земле.

Явление растекания

В 3-х фазной питающей сети, работающей по схеме с так называемой «изолированной» нейтралью, о замыкании фазы на землю можно судить по показаниям подключённого к ней индикаторного прибора (вольтметра). Для организации таких измерений его контрольные щупы подсоединяются к контактам вторичной обмотки измерительного трансформатора типа НТМИ, способного выдерживать длительные перенапряжения.

При непосредственном или прямом замыкании проводника на землю обмотка измерительного трансформатора накоротко замкнута, а показания соответствующего ей вольтметра будут нулевыми.

Одновременно с этим суммарный магнитный поток (индукция) в двух других обмотках НТМИ увеличится в √3 раз, а соответствующими вольтметрами вместо фазного измеряется линейное напряжение.

В случае практического измерения емкостного тока замыкания на землю используют метод «подбора». Его суть заключается в умышленных смещениях нейтрали (подача переменного напряжения в нейтраль) и измерении возникающих при этом токах.

Метод применяется только в сухую погоду к сетям не более 10 кВ. Проводить замеры тока замыкания на землю могут те работники, которые получили допуск.

Расчетный ток замыкания на землю определяется как геометрическая сумма его емкостных составляющих во всех рабочих жилах согласно следующей формуле:

С ростом протяжённости сети её емкость, естественно, возрастает и, согласно формуле, увеличивается аварийный ток утечки. Одновременно с этим в соответствии с требованиями ПУЭ величина тока в цепи не должна превышать следующих значений:

Для выполнения указанного требования в 3-х фазных питающих цепях должна быть принудительно организована компенсация емкостного тока замыкания на землю.

Последствия замыкания

Растекание тока в сетях с изолированной нейтралью возможно лишь через провод, находящийся в прямом контакте с грунтом. Самый близкий пример такой ситуации – искусственный заземлитель.

Стекание тока

Аварийное замыкание фазы на грунт приводит к тому же эффекту, в результате которого происходит резкое уменьшение потенциала проводника относительно земли.

В указанной ситуации такой провод формально превращается в одиночный заземлитель.

Напряжение в точке контакта понижается до значения, соответствующего произведению протекающего через неё тока на величину сопротивления почвы его растеканию.

Это явление очень полезно с точки зрения уменьшения опасности при случайном повреждении линии. Одновременно с этим понижение потенциала фазы приводит к ряду нежелательных последствий.

Одно из негативных последствий – эффект распределения потенциала по поверхности земли вблизи от зоны контакта. Вследствие этого в точках, по-разному удалённых от заземляющей конструкции, появляются различные по величине потенциалы, образующие перепады напряжения, опасные для попавших в эту зону людей.

Это обстоятельство послужило причиной введения такого показателя, как «напряжение шага», определяемого разностью потенциалов между его ступнями при передвижении в границах опасной зоны.

В связи с тем, что снижение потенциала по мере удаления от точки контакта происходит по экспоненте – максимальное напряжение шага наблюдается вблизи от неё. Минимум этой величины проявляется на участках, достаточно удаленных от эпицентра аварии.

Характер распределения тока замыкания на землю, величина сопротивления растеканию и распределение потенциалов на опасном участке – все эти показатели зависят от геометрических параметров образовавшегося соединения. Существенное влияние на них оказывает и состояние грунта в момент аварии (повышенная влажность, сухость или другие факторы).

Возникновение дуги

Ещё одним последствием замыкания фазного проводника на землю является образование электрической дуги, в процессе горения которой выделяется большое количество тепла и наблюдается ионизация воздуха. Это создаёт условия, способствующие появлению в линейных межфазных цепях короткого замыкания.

Прерывистый характер дуги, образующейся при замыкании на землю, приводит к появлению значительных перенапряжений величиной до 3,2 Uф.. С целью снижения амплитуды ёмкостных токов, увеличения времени восстановления напряжения на аварийной фазе, а также ограничения перенапряжений при последующих зажиганиях дуги в цепях устанавливается специальный дугогасящий реактор.

Компенсационные меры защиты

В соответствии с положениями ПУЭ в нормальных условиях работы сети должны предприниматься специальные меры защиты от возможного пробоя на землю.

Для ограничения емкостных токов в нейтраль трансформатора вводится специальный дугогасящий реактор (смотрите рисунок 1, б). С его помощью удаётся снизить (компенсировать) ток однофазного замыкания на землю, возникающий сразу после аварии.

Практически установлено, что при наличии компенсатора воздушные и кабельные линии могут работать в критическом аварийном режиме довольно продолжительное время и вот почему.

Как только протекающий в реакторе индуктивный ток Ip сравнивается по своей величине с противофазной емкостной составляющей Ic – наблюдается эффект компенсации, при котором Iр + Iс = 0 (явление резонанса токов).

Реакторы с индуктивным импедансом достаточно просто настраиваются на работу с переменным значением компенсационного потока и могут эксплуатироваться в режимах недо- и перекомпенсации.

ЭТО ИНТЕРЕСНО:  Что такое электрическое напряжение

Использование дугогасящего реактора оказывает определённое влияние на распределение потенциалов в линейных проводах и в нейтрали. В последней появляется напряжение смещения Ucм , вызванное асимметрией в цепи и приложенное к выводам реактора.

В резонансном режиме такое рассогласование приводит к искажению нормальной картины распределения потенциалов даже в отсутствии однофазного замыкания (ОЗЗ).

Искусственное предупреждение резонансных явлений может быть достигнуто путём преднамеренного рассогласования соответствующих цепей, в результате чего удаётся снизить Ucм и выровнять показания контрольных приборов.

Дополнительное замечание. Варьировать величину компенсационных токов допускается в пределах, при которых образовавшееся в случае аварии рассогласование не приводило бы к появлению Ucм более чем 0,7 Uф.

Порядок расчёта параметров однофазного замыкания

Расчет емкостного тока замыкания предлагаем рассмотреть на примере типовых электрических подстанций с действующим напряжением 10 киловольт.

Для повышения точности проводимых при этом выкладок советуем воспользоваться методом, при котором за основу берётся показатель удельного ёмкостного тока. (С его рабочими значениями можно будет ознакомиться в одной из таблиц, приведённых в приложении). Формула, в соответствии с которой рассчитывается этот показатель, выглядит следующим образом:

где:

Uф – эта фазное напряжение 3-х фидерной электросети, киловольты,

ω=2Пf=314(радианы/секунду).

Со – величины ёмкости каждой отдельной фазы по отношению к земле (микрофарады/километры).

Сразу же вслед за этим можно будет приступать к определению величины ёмкостной составляющей тока в самой фидерной линии:

По завершении основного расчёта переходим к определению параметров срабатывания защиты от перенапряжений (компенсационных токов).

При их проведении следует исходить из показателя емкостного тока защиты, определяемого по формуле:

где:
Кн – показатель надежности работы защиты (обычно он принимается равным 1,2),

Кбр – показатель так называемого «броска», учитывающий скачок тока в момент возникновения однофазного замыкания на землю (ОЗЗ),

Ic фидера макс. – емкостный ток подлежащего защите фидера.

Соблюдение неравенства, обозначенного в приведённой выше формуле, позволяет обеспечить условия, при которых даже при возникновении однофазного замыкания на землю защита не будет срабатывать.

Для реле ЭМ типа рекомендуемый показатель надёжности срабатывания защиты, как правило, выбирается равным 2 или 3 единицам. При этом в защитной схеме не предусматривается специальная временная задержка. При установке в этих цепях цифровых реле рабочее значение показателя Кбр = 1-1,5.

В заключение отметим, что для различных промышленных устройств фидерной защиты указанные параметры могут иметь значения, несколько отличающиеся от тех, что приведены в расчётах.

Источник: https://evosnab.ru/ustanovka/zemlja/tok-zamykanija-na-zemlju

ОЗЗ. Компенсация емкостных токов замыкания на землю

Одним из наиболее частых видов повреждений на линиях электропередачи является однофазное замыкание на землю (ОЗЗ) — это вид повреждения, при котором одна из фаз трехфазной системы замыкается на землю или на элемент электрически связанный с землей.

ОЗЗ является наиболее распространенным видом повреждения, на него приходится порядка 70-90 % всех повреждений в электроэнергетических системах.

Протекание физических процессов, вызванных этим повреждением, в значительной мере зависит от режима работы нейтрали данной сети.

В сетях, где используется заземленная нейтраль, замыкание фазы на землю приводит к короткому замыканию. В данном случае ток КЗ протекает через замкнутую цепь, образованную заземлением нейтрали первичного оборудования. Такое повреждение приводит к значительному скачку тока и, как правило, незамедлительно отключается действием РЗ, путем отключения поврежденного участка.

Электрические сети классов напряжения 6-35 кВ работают в режиме с изолированной нейтралью или с нейтралью, заземленной через большое добавочное сопротивление. В этом случае замыкание фазы на землю не приводит к образованию замкнутого контура и возникновению КЗ, а ОЗЗ замыкается через емкости неповрежденных фаз.

Величина этого тока незначительна (достигает порядка 10-30 А) и определяется суммарной емкостью неповрежденных фаз. На рис. 1 показаны схемы 3-х фазной сети в режимах до и после возникновения ОЗЗ.

Рисунок 1 – Схема сети с изолированной нейтралью а) в нормальном режиме; б) при ОЗЗ

Такое повреждение не требует немедленного отключения, однако, его длительное воздействие может привести к развитию аварийной ситуации. Однако при ОЗЗ в сетях с изолированной нейтралью происходят процессы, влияющие на режим работы электрической сети в целом.

На рис. 2 представлена векторная диаграмма напряжений.

Рисунок 2 – Векторные диаграммы напряжений а) в нормальном режиме; б) при ОЗЗ

При ОЗЗ происходит нарушение симметрии линейных фазных напряжений, напряжение поврежденной фазы снижается практически до 0, а двух “здоровых” фаз поднимаются до уровня линейных. При этом линейные напряжения остаются неизменными.

2. Последствия ОЗЗ

Несмотря на преимущества изолированной нейтрали, такой режим работы имеет ряд недостатоков:

  1. В зависимости от разветвленности сети емкостной ток может находиться в пределах от 0,1 до 500 ампер. Такая величина тока может представлять опасность для животных и людей, находящихся рядом с местом замыкания, по этой причине данные замыкания нужно выявлять и отключать, так же, как это делается и в сетях с глухозаземленной нейтралью.
  2. В большинстве случаев при ОЗЗ возникает дуговое замыкание на землю, которое может носить прерывистый характер. В таком случае, в процессе дугового замыкания возникают перенапряжения, превышающие в 2-4 раза номинальное фазное напряжение. Изоляция в процессе замыкания может не выдержать такие перенапряжения, вследствие чего возможны возникновения пробоя изоляции в любой другой точке сети и тогда замыкание развивается в двойное короткое замыкание на землю.
  3. В процессе развития и ликвидации ОЗЗ в трансформаторах напряжения возникает эффект феррорезонанса, что с высокой вероятностью приводит к их преждевременному выходу из строя.

Несмотря на перечисленные недостатки ОЗЗ не требует немедленного ликвидации повреждения. Согласно ПУЭ, при возникновении ОЗЗ возможно эксплуатация сети без отключения аварии в течении 4 часов, которые выделяются на поиск поврежденного участка.

3. Расчет суммарного тока ОЗЗ

При замыкании на землю фазы одной из нескольких ЛЕП, что включенные к общему источнику, суммарный ток в месте замыкания за счет емкостных токов всех ЛЕП можно рассчитать несколькими методами.

Первый метод заключается в использовании удельных емкостей ЛЭП. Этот способ расчета даст наиболее точный результат и является предпочтительным. Удельные емкости ЛЭП можно взять из справочной литературы, или же из технических характеристик кабеля, предоставляемых заводом-изготовителем.

Выражение для определения тока ОЗЗ:

,

где С∑ – суммарная емкость фазы всех ЛЕП, причем С∑ = Суд l;
Суд – удельная емкость фазы сети относительно земли, Ф/км;
l – общая длина проводника одной фазы сети.

Второй метод применим для сетей с кабельными ЛЭП. Ток замыкания на землю для такой сети можно определить по эмпирической формуле:

,

где UНОМ – номинальное линейное напряжение сети, кВ;
li – длина кабельной линии, км;
qi – сечение жилы кабеля, мм2.

Кроме этих методов для расчета суммарного тока ОЗЗ, можно использовать значения емкостных токов каждого кабеля взятых из справочной литературы.

4. Компенсационные меры защиты

Из-за распределённой по воздушным и кабельным линиям электропередач ёмкости, при ОЗЗ в месте повреждения протекает ёмкостный ток. В наиболее тяжелых случаях, возможно возникновение электрической дуги, горение которой может приводить к переходу ОЗЗ в двух- или трёхфазное замыкание и отключению линии релейной защитой. Вследствие этого потребитель электроэнергии может временно лишиться электроснабжения.

В соответствии с положениями ПУЭ в нормальных условиях работы сети должны предприниматься специальные меры защиты от возможного пробоя на землю.
Для предотвращения возникновения дуги и уменьшения емкостных токов применяют компенсацию емкостных токов. Значения емкостных токов, при превышении которых требуется компенсация согласно ПУЭ и ПТЭ, приведены табл. 1.

Таблица 1 – Значения токов требующие компенсации

Напряжение сети, кВ 6 10 20 35
Емкостный ток, А 30 20 15 10

При более низких уровнях токов считается, что дуга не загорается, или гаснет самостоятельно, применение компенсации в этом случае не обязательно.

5. Дугогасящий реактор

Для ограничения емкостных токов в нейтраль трансформатора вводится специальный дугогасящий реактор (рис. 3).

Рисунок 3 – Дугогасящий реактор

Этот способ является наиболее эффективным средством защиты электрооборудования от замыканий на землю и компенсации емкостного тока. С его помощью удаётся снизить (компенсировать) ток однофазного замыкания на землю, возникающий сразу после аварии.

6. Основные характеристики ДГР

Дугогасящий реактор (ДГР) – это электрический аппарат, предназначенный для компенсации емкостных токов в электрических сетях с изолированной нейтралью, возникающих при однофазных замыканиях на землю (ОЗЗ). Главным нормативным документом регламентирующим работу, установку и надстройку ДГР является Р 34.20.179.

Дугогасящие реакторы должны подключаться к нейтралям трансформаторов, генераторов или синхронных компенсаторов через разъединители. В цепи заземления реакторов должен быть установлен трансформатор тока. Рекомендуемые схемы подключения ДГР представлены на рис. 4.

Рисунок 4 – Схема подключения ДГР: а) подключение ДГР к трансформаторам СН; б) подключение ДГР к нейтрале силового трансформатора

Индуктивность ДГР подбирается из условия равенства емкостной проводимости сети и индуктивной проводимости реактора. Таким образом, происходит компенсация ёмкостного тока.

Ёмкостный ток суммируется в месте замыкания равным ему и противоположным по фазе индуктивным, в результате остается только активная часть, обычно очень малая, это утечки через изоляцию кабельных линий и активные потери в ДГР (как правило, не превышают 5 А), которой недостаточно для возникновения электрической дуги и шагового напряжения. Токоведущие цепи остаются неповреждёнными, потребители продолжают снабжаться электроэнергией.

Современные ДГР имеют различные конструктивные особенности и производятся для огромного диапазона мощностей. В таблице 2 приведен ряд параметров дугогасящих реакторов разных производителей.

Таблица 2 – Параметры ДГР

Тип реактора РДМР РЗДПОМ РУОМ ASR, ZTC TRENCH
Охлаждение Масляное Масляное Масляное Масляное Масляное,сухое
Исполнение Одинарное Одинарное Одинарное Одинарное, комб-ное Одинарное, комб-ное
Класс напряжения,кВ 6, 10 6, 10,20, 35 6, 10 6, 10,20, 35 6, 10,20, 35
Кратность регулирования 8–25 5 10 10 10
Диапазон мощностей,кВА 300–820(1520) 120–1520 90–1520 50–8000 100–1000

При выборе дугогасящего реактора рекомендуется следующий порядок; определяется максимальный емкостный ток замыкания на Землю; определяется суммарная мощность реакторов из условия полной компенсации емкостного тока (резонансная настройка); определяется число реакторов (если IС > 50 А, рекомендуется применять не менее двух реакторов);

7. Конструкция ДГР

Конструктивно ДГР близка к масляным трансформаторам: бак, заполненный трансформаторным маслом, в который помещена магнитная система с обмоткой. Сама магнитная система представляет собой регулируемую катушку индуктивности.

В настоящее время эксплуатируются различные виды ДГР, которые могут создаваться под индивидуальные условия эксплуатации, не требующие специальных настроек или изготавливаться с возможностью регулировки. В связи с этим различаются следующие конструкции магнитопровода:

  • с распределенным воздушным зазором;
  • плунжерного типа;
  • с подмагничиванием.

В ДГР имеющих магнитопровод с распределенным воздушным зазором, регулирование может отсутствовать вовсе или осуществляется за счет переключения ответвления для ступенчатого регулирования сопротивления.

В ДГР плунжерного типа имеет магнитную систему с перемещающимися стержнями, которые плавно регулируют воздушный зазор внутри обмотки. Стержни перемещаются с помощью электропривода, что обеспечивает плавное регулирование сопротивления реактора. ДГР с подмагничиванием магнитопровода постоянным током работает по принципу магнитного усилителя. При подмагничивании магнитопровода изменяются его магнитное сопротивление и, соответственно, индуктивное сопротивление реактора.

Для отстройки индуктивности ДГР оснащаются системами управления. По конструкции систем регулирования их можно разделить на:

  1. ДГР с ручным переключением числа работающих витков. Этот процесс не только трудоемкий, но и требует снятия напряжения с реактора;
  2. ДГР с приводом, работающим автоматически под нагрузкой сети;
  3. ДГР не имеющие возможности регулирования индуктивности системой управления не оснащаются.

Современные конструкции дугогасящих реакторов в управлении используют микропроцессорные технологии, облегчающие возможности эксплуатации предоставлением обслуживающему персоналу расширенной информации по статистике замыканий, поиску повреждений и другим полезным функциям.

8. Пример выбора ДГР

Требуется выбрать мощность и тип дугогасящего реактора в сети Uном=10 кВ. Суммарный емкостной ток замыкания на землю составляет Iс=24,2 А.
Поскольку емкостный ток ОЗЗ превышает допустимый 20 А для сети 10 кВ, требуется его компенсация. Мощность ДГР, согласно РД 34.20.179, определяется по формуле

.

  Поскольку данные о развитии сети отсутствуют, полученную расчетную мощность ДГР необходимо умножить на 1,25.

На основании полученного результата и исходных данных к установке принимается ДГР со ступенчатым регулированием типа РЗДСОМ-190/10Т1.

Заключение

Одно из основных достоинств сетей с изолированной нейтралью является возможность сохранения их в работе при однофазном замыкании на землю. Однако при работе с таким нарушением нормального режима возможно дальнейшее развитие аварии. Вследствие этого сети 6-35 кВ необходимо оснащать ДГР для уменьшения тока замыкания на землю и облегчения аварийного режима.

Источник: https://electricps.ru/ozz-dgr

Что такое изолированная нейтраль и где она используется

В настоящее время изолированную нейтраль сложно встретить в быту, вы никогда с ней не столкнетесь, если делаете проводку в квартирах. В то время как высоковольтных линиях она активно используется, а также в некоторых случаях и в сетях 380В. Подробнее о том, что такое сеть с изолированной нейтралью и какие у нее особенности, мы расскажем простыми словами в этой статье.

Что это такое

Определение понятия «изолированная нейтраль» приведено в главе 1.7. ПУЭ, в пункте 1.7.6. и ГОСТ Р 12.1.009-2009. Где сказано, что изолированной называется нейтраль у трансформатора или генератора, не присоединенная к заземляющему устройству вообще, или, когда она присоединена через приборы защиты, измерения, сигнализации.

Нейтралью называется точка, в которой соединены обмотки у трансформаторов или генераторов при включении по схеме «звезда».

Среди электриков есть заблуждение о том, что сокращенное название изолированной нейтрали – это система IT, по классификации п. 1.7.3. Что не совсем верно. В этом же пункте сказано, что обозначения TN-C/C-S/S, TT и IT приняты для сетей и электроустановок напряжением до 1 кВ.

В той же главе 1.7 ПУЭ есть пункт 1.7.2. где сказано, что в отношении мер электробезопасности электроустановки делятся на 4 типа — изолированную или глухо заземленную до 1 кВ и выше 1 кВ.

Таким образом есть некоторые отличия в безопасности и применении такой сети в разных классах напряжения и называть линию 10 кВ с изолированной нейтралью «система IT» по меньше мере неправильно. Хотя схематически – почти тоже самое.

ЭТО ИНТЕРЕСНО:  Что такое свободные электроны

Общие сведения

Давайте разберемся где, как и в каких случаях используют изолированную нейтраль в электроустановках напряжением до 1000 В, так называемую систему IT. В ПУЭ главе 1.7. п. 1.7.3. дано определение похожее на то, что приведено выше, но оно несколько отличается. Там сказано, что корпуса и другие проводящие части в установках системы IT должны быть заземлены. Рассмотрим, как это выглядит на схеме.

Так как нейтраль трансформатора сети IT не соединена с землёй, то, говоря простым языком, у нас нет опасной разности потенциалов между землёй и фазными проводами. И случайное касание 1 провода под напряжением в системе IT безопасно. Из-за относительно низкого напряжения здесь пренебрегают емкостной проводимостью фаз.

В сетях с изолированной нейтралью нет выраженных фазы и нуля – оба проводника равноправны.

Ток через тело человека равняется:

Iч = 3Uф/(3rч+ z)

Uф — фазное напряжение; rч — сопротивление тела человека (принимается 1 кОм); z — полное сопротивление изоляции фазы относительно земли (составляет 100 кОм и более на фазу).

Ток в этом случае возвращается к источнику питания через изоляцию проводов, а не в землю, как в случае с TN.

Так как сопротивление изоляции более 100 кОм на фазу, то сила тока через тело будет составлять единицы милиампер, что не причинит вреда.

Следующей особенностью этой системы является то, что токи утечки на корпус и токи КЗ на землю будут низкими. В результате защитная автоматика (релейная или автоматические выключатели) не срабатывают тем образом, к которому мы привыкли в сетях с глухозаземленной нейтралью. Но срабатывает система контроля сопротивления изоляции.

Соответственно при однофазном замыкании трёхфазной линии – система продолжит функционировать. При этом относительно земли возрастает напряжение на двух оставшихся проводах. Если человек коснется фазного провода – он попадает под линейное напряжение.

В связи с такой конструкцией в сети с изолированной нейтралью нет двух видов напряжения в отличии от глухозаземленной, где между фазами Uлинейное (в быту 380В), а между фазой и нулём Uфазное (220В). Для подключения однофазной нагрузки к сети системой IT с напряжением 380В можно использовать понижающие трансформаторы типа 380/220 и подключать приборы между двумя фазами на линейное напряжение.

Сфера применения

Поговорим о том, где используются такое решение. Эта система электроснабжения применялась в отечественных электросетях для передачи электроэнергии жилым домам, во времена СССР. Особенно для электрификации деревянных домов, где при использовании глухозаземленной нейтрали повышался риск возникновения пожара при замыканиях на землю.

С точки зрения электробезопасности разница между изолированной и глухозаземленной нейтралью в электроснабжении домов, заключается в том, что если в сети IT один из проводников коснётся заземленных токопроводящих частей, например арматуры стен или водопровода, сеть продолжит функционировать, из-за малых токов утечки.

Соответственно ни жители, ни кто-то другой не узнает о проблеме, пока при одновременном касании кем-то одного из проводов и трубопровода – кого-то не ударит током.

В системе с глухозаземленной нейтралью как минимум сработает дифзащита, а при «хорошем» металлическом замыкании – отключится автоматический выключатель. С началом массового строительства панельных домов (т.н. хрущевок) от неё отказались и в 60-80-х годах перешли на TN-C, а в конце 90-х годов на TN-C-S, о причинах читайте ниже.

В настоящее время изолированная нейтраль используется везде, где нужно обеспечить повышенную безопасность или нет возможности сделать нормальное заземление, а именно:

  • В море — на судах, нефте- и газодобывающих платформах, где использование корпуса платформы в качестве заземления невозможно в связи с анодной защитой, а в местах стекания тока в воду она начнет усиленно ржаветь и гнить.
  • В шахтах и других местах добычи ископаемых (с напряжением 380-660В).
  • В метро.
  • На освещении и цепях управления в стационарных грузоподъёмных кранах и пр.
  • Также в бытовых бензиновых, газовых или дизельных генераторах на выходных клеммах именно изолированная нейтраль.

Она может встречаться не только в том виде, что мы привели на схеме выше, но и в виде понижающих и разделительных трансформаторов, которые используются для питания переносных осветительных приборов (не более 50В или 12В ПТЭЭП п.2.12.6.) и другого оборудования или инструмента, в том числе и тех, с которыми работают в замкнутых и сырых помещениях.

Подведем итоги

Мы разобрались для чего нужна изолированная нейтраль до 1 кВ, теперь перечислим достоинства и недостатки системы электроснабжения с изолированной нейтралью для чайников в электрике.

Преимущества использования:

  1. Большая безопасность.
  2. Большая надежность, что позволяет использовать, например, для освещения в больницах.
  3. Экономический фактор – в трёхфазной сети с изолированной нейтралью можно передать электроэнергию по минимально возможному количеству проводов – по трём.
  4. Система продолжит работу при однофазных замыканиях на землю.

Недостатки:

  1. При замыкании на землю повышается опасность использования, так как продолжается подача электроэнергии.
  2. Малые токи КЗ.
  3. Нет искр при первичном КЗ.

В сетях выше 1000 в

В настоящее время изолированная нейтраль чаще всего используется в сетях со средним классом напряжения (1-35 кВ). Для сети 110 кВ и выше – глухозаземленная. В связи с тем, что при КЗ на землю напряжение, как было сказано, возрастает до линейного, так в ЛЭП 110 кВ фазное напряжение (между землёй и фазным проводом) – 63,5 кВ. При КЗ на землю это особенно важно, и позволяет снизить расходы на изоляционные материалы.

Кстати в КТП с высшим напряжением до 35 кВ первичные обмотки трансформаторов соединяются в треугольник, где нейтрали нет как таковой.

Низкие токи КЗ и возможность работать при однофазных КЗ на ВЛ – в распределительных сетях особенно важны и позволяют организовать бесперебойное электроснабжение. При этом угол сдвига между оставшимися в работе фазами остаётся неизменным — в 120˚.

При напряжениях в тысячи вольт емкостной проводимостью фаз пренебречь нельзя. Поэтому касание проводов ВЛЭП опасно для жизни человека. В нормальном режиме токи в фазах источника определяются суммой нагрузок и емкостных токов относительно земли, при этом сумма емкостных токов равна нулю и ток в земле не проходит.

Если опустить некоторые подробности, чтобы изложить языком, понятным для начинающих, то при КЗ на землю напряжение относительно земли поврежденной фазы приближается к нулю. Так как напряжения двух других фаз увеличиваются до линейных значений их емкостные токи увеличиваются в √3 (1,73) раз.

В результате емкостный ток однофазного КЗ оказывается в 3 раза большим нормального. Например, для ВЛЭП 10 кВ длиной 10 км емкостный ток равен примерно 0,3 А.

При замыкании фазы на землю через дугу в результате различных явлений возникают опасные перенапряжения до 2-4Uф, что приводит к пробою изоляции и междуфазному КЗ.

Для исключения возможности возникновения дуг и устранения возможных последствий нейтраль соединяют с землёй через дугогасящих реактор. Его индуктивность при этом подбирают согласно ёмкости в месте КЗ на землю, а также чтобы он обеспечивал работу релейной защиты.

Таким образом благодаря реактору:

  1. Намного уменьшается Iкз.
  2. Дуга становится неустойчивой и быстро гаснет.
  3. Замедляется нарастание напряжения после гашения дуги, в результате уменьшается вероятность повторного возникновение дуги и коммутационного тока.
  4. Токи обратной последовательности малы, следовательно, их действие на вращающейся ротор генератора не оказывает существенного влияния.

Перечислим плюсы и минусы высоковольтных сетей с изолированной нейтралью.

Преимущества:

  1. Какое-то время может работать в аварийном режиме (при КЗ на землю)
  2. В местах неисправности появляется незначительный ток, при условии малой емкости тока.

Недостатки:

  1. Усложнено обнаружение неисправностей.
  2. Необходимость изоляции установок на линейное напряжение.
  3. Если замыкание продолжается длительное время, то возможно поражение человека электрическим током, если он попадёт под шаговое напряжение.
  4. При 1-фазных КЗ не обеспечивается нормальное функционирование релейной защиты. Величина тока замыкания напрямую зависит от разветвленности цепи.
  5. Из-за накапливания дефектов изоляции от воздействия на нее дуговых перенапряжений снижается срок её службы.
  6. Повреждения могут возникнуть в нескольких местах из-за пробоя изоляции, как в кабелях, так и в электродвигателях и других частях электроустановки.

На этом обзор принципа действия и особенностей сетей с изолированной нейтралью заканчивается. Если вы хотите дополнить статью или поделится опытом – пишите в комментариях, мы обязательно опубликуем!

Материалы по теме:

Источник: https://samelectrik.ru/chto-takoe-izolirovannaya-nejtral-i-gde-ona-ispolzuetsya.html

Расчет емкостных токов присоединений в сети 6(10) кВ

В данной статье речь пойдет о расчете собственных емкостных токов для различных присоединений в сети 6(10) кВ с изолированной нейтралью.

Как известно через трансформатор тока нулевой последовательности (ТТНП) неповрежденных присоединений протекает собственный емкостной ток.

При однофазном замыкании на землю (ОЗЗ) через ТТНП поврежденного присоединения будет протекать суммарный емкостной ток всех неповрежденных присоединений.

Векторные диаграммы поврежденного и неповрежденного присоединения представлены на рис.1.

Рис.1 — Векторные диаграммы поврежденного и неповрежденного присоединений в сети с изолированной нейтралью

Исходя из выше изложенного, защиту от ОЗЗ выполняют отстраиваясь от собственного емкостного тока.

Подробно расчет тока ОЗЗ рассмотрен в статье: «Расчет тока однофазного замыкания на землю в сети с изолированной нейтралью».

Расчет емкостных токов выполняется для следующих присоединений:

  • кабельные линии;
  • воздушные линии;
  • асинхронные и синхронные электродвигатели;
  • генераторы;

1. Удельный емкостной ток замыкания на землю для кабельной линии определяется по формуле 7 [Л1, с.6]:

где:

  • Uф = Uл/√3 — фазное напряжение сети, В;
  • ω = 2Пf = 314 – угловая частота напряжения, (рад/с);
  • Сф — емкость одной фазы сети относительно земли (мкФ/км);

1.1 Емкостной ток кабельной линии определяется по формуле 6.4 [Л3, с.215]:

где:

  • L – длина кабельной линии, км;
  • m – число проводов (кабелей) в фазе линии.

Пример 1

Определить емкостной ток кабельной линии длиной 500 м, выполненный кабелем АПвЭВнг сечением 3х120 мм2 при напряжении сети 10 кВ.

Решение

1. Определяем удельный емкостной ток замыкания на землю для кабеля АПвЭВнг сечением 3х120 мм2:

где: Сф = 0,323 мкФ/км — емкость одной фазы сети относительно земли, принимается из технических характеристик кабеля, которые предоставляет Завод-изготовитель, в данном случае значение Сф, принято из приложения 7 таблица 40 «Инструкция и рекомендации по прокладке, монтажу и эксплуатации кабелей с изоляцией из сшитого полиэтилена на напряжение 6,10,15,20 и 35 кВ ОАО «Электрокабель» Кольчугинский завод».

Как мы видим результат расчета совпадает со значением таблицы 40.

Если же вы не смогли найти значение Сф, для определения значения удельного емкостного тока можно воспользоваться таблицей из [Л2, с.141].

2. Определяем емкостной ток кабельной линии, учитывая длину линии:

Емкостной ток для воздушной линии 6-35 кВ определяется по формуле представленной в [Л2, с.142]:

где:

  • Uн – номинальное напряжение сети (6 или 10 кВ), кВ;
  • L –длина воздушней линии, км;
  • m – число проводов (кабелей) в фазе линии.

Синхронные и асинхронные электродвигатели

Собственный емкостной ток синхронных и асинхронных двигателей определяется по формуле 6.3 [Л3, с.215] и выражеться в амперах:

где:

  • fном. – номинальная частота сети, Гц;
  • Сд – емкость фазы статора, Ф;
  • Uном. – номинальное напряжение электродвигателя, В.

Емкость фазы статора Сд принимается по данным завода-изготовителя. Если же данные значения отсутствуют, можно воспользоваться следующими приближенными формулами [Л3, с.215]:

  • для неявнополюсных СД и АД с короткозамкнутым ротором:

где:

  • Sном. – номинальная полная мощность электродвигателя, МВА;
  • Uном. – номинальное напряжение электродвигателя, кВ.
  • для остальных электродвигателей:

где:

  • Uном. – номинальное напряжение электродвигателя, В;
  • nном. – номинальная частота вращения ротора, об/мин.

Турбогенераторы и гидрогенераторы

Собственный емкостной ток при замыкании одной фазы на землю турбогенераторов и гидрогенераторов определяется по той же формуле 6.3 [Л3, с.215], что синхронные и асинхронные двигатели, см. [Л4, с.48].

Емкость фазы статора Сд по отношению к землю для турбогенераторов и гидрогенераторов, определяется по тем же формулам, что и для двигателей, согласно [Л4, с.48].

В таблице 3 [Л4, с.48] проводиться значения емкостных токов при замыкании одной фазы на землю для некоторых типов турбогенераторов и гидрогенераторов. Особое внимание обратите на последние 2 столбца таблицы.

Литература:

  1. РД 34.20.179 Типовая инструкция по компенсации емкостного тока замыкания на землю в электрических сетях 6-35 кВ — 1993 г.
  2. Расчеты релейной защиты и автоматики распределительных сетей. М.А. Шабад -2003 г.
  3. Корогодский В.И., Кужеков С.Л., Паперно Л.Б. Релейная защита электродвигателей напряжением выше 1 кВ, 1987 г.
  4. Руководящие указания по релейной защите. Выпуск 01. Защита генераторов, работающих на сборные шины.
  5. СТО ДИВГ-058-2017. Расчет токов коротких замыканий и замыканий на землю в распределительных сетях. Методические указания. 2017г.

Благодарность:

Если вы нашли ответ на свой вопрос и у вас есть желание отблагодарить автора статьи за его труд, можете воспользоваться платформой для перевода средств «WebMoney Funding».

Данный проект поддерживается и развивается исключительно на средства от добровольных пожертвований.

Проявив лояльность к сайту, Вы можете перечислить любую сумму денег, тем самым вы поможете улучшить данный сайт, повысить регулярность появления новых интересных статей и оплатить регулярные расходы, такие как: оплата хостинга, доменного имени, SSL-сертификата, зарплата нашим авторам.

Источник: https://raschet.info/raschet-emkostnyh-tokov-prisoedinenij-v-seti-6-10-kv/

Понравилась статья? Поделиться с друзьями:
220 вольт
Как подключить датчик уровня топлива

Закрыть