Что такое кпд в физике

Задачи на КПД теплового двигателя: примеры решений

У нас уже была внутренняя энергия и первое начало термодинамики, а сегодня разберемся с задачами на КПД теплового двигателя. Что поделать: праздники праздниками, но сессию ведь никто не отменял.

Присоединяйтесь к нам в телеграме и получайте полезную рассылку каждый день. А приступая к практике, не забывайте держать под рукой памятку по задачам и полезные формулы.

Задача на вычисление КПД теплового двигателя №1

Условие 

Вода массой 175 г подогревается на спиртовке. Пока вода нагрелась от t1=15 до t2=75 градусов Цельсия, масса спиртовки уменьшилась с 163 до 157 г Вычислите КПД установки.

Решение

Коэффициент полезного действия можно вычислить как отношение полезной работы и полного количества теплоты, выделенного спиртовкой:

Полезная работа в данном случае – это эквивалент количества теплоты, которое пошло исключительно на нагрев. Его можно вычислить по известной формуле:

Полное количество теплоты вычисляем, зная массу сгоревшего спирта и его удельную теплоту сгорания.

Подставляем значения и вычисляем:

Ответ: 27%

Задача на вычисление КПД теплового двигателя №2

Условие

Старый двигатель совершил работу 220,8 МДж, при этом израсходовав 16 килограмм бензина. Вычислите КПД двигателя.

Решение

Найдем общее количество теплоты, которое произвел двигатель:

Теперь можно рассчитать КПД:

Или, умножая на 100, получаем значение КПД в процентах:

Ответ: 30%.

Задача на вычисление КПД теплового двигателя №3

Условие

Тепловая машина работает по циклу Карно, при этом 80% теплоты, полученной от нагревателя, передается холодильнику. За один цикл рабочее тело получает от нагревателя 6,3 Дж теплоты. Найдите работу и КПД цикла.

Решение

КПД идеальной тепловой машины:

По условию:

Вычислим сначала работу, а затем КПД:

Ответ: 20%; 1,26 Дж.

Задача на вычисление КПД теплового двигателя №4

Условие

На диаграмме изображен цикл дизельного двигателя, состоящий из адиабат 1–2 и 3–4, изобары 2–3 и изохоры 4–1. Температуры газа в точках 1, 2, 3, 4 равны T1 , T2 , T3 , T4 соответственно. Найдите КПД цикла.

Решение

Проанализируем цикл, а КПД будем вычислять через подведенное и отведенное количество теплоты. На адиабатах тепло не подводится и не отводится. На изобаре 2 – 3 тепло подводится, объем растет и, соответственно, растет температура. На изохоре 4 – 1 тепло отводится, а давление и температура падают.

Аналогично:

Получим результат:

Ответ: См. выше.

Задача на вычисление КПД теплового двигателя №5

Условие

Тепловая машина, работающая по циклу Карно, совершает за один цикл работу А = 2,94 кДж и отдаёт за один цикл охладителю количество теплоты Q2 = 13,4 кДж. Найдите КПД цикла.

Решение

Запишем формулу для КПД:

Отсюда:

Ответ: 18%

Вопросы на тему тепловые двигатели

Вопрос 1. Что такое тепловой двигатель?

Ответ. Тепловой двигатель – это машина, которая совершает работу за счет энергии, поступающей к ней в процессе теплопередачи. Основные части теплового двигателя: нагреватель, холодильник и рабочее тело.

Вопрос 2. Приведите примеры тепловых двигателей.

Ответ. Первыми тепловыми двигателями, получившими широкое распространение, были паровые машины. Примерами современного теплового двигателя могут служить:

  • ракетный двигатель;
  • авиационный двигатель;
  • газовая турбина.

Вопрос 3. Может ли КПД двигателя быть равен единице?

Ответ. Нет. КПД всегда меньше единицы (или меньше 100%). Существование двигателя с КПД равным единице противоречит первому началу термодинамики.

КПД реальных двигателей редко превышает 30%.

Вопрос 4. Что такое КПД?

Ответ. КПД (коэффициент полезного действия) – отношение работы, которую совершает двигатель, к количеству теплоты, полученному от нагревателя.

Вопрос 5. Что такое удельная теплота сгорания топлива?

Ответ. Удельная теплота сгорания q – физическая величина, которая показывает, какое количество теплоты выделяется при сгорании топлива массой 1 кг. При решении задач КПД можно определять по мощности двигателя N и сжигаемому за единицу времени количеству топлива.

Задачи и вопросы на цикл Карно

Затрагивая тему тепловых двигателей, невозможно оставить в стороне цикл Карно – пожалуй, самый знаменитый цикл работы тепловой машины в физике. Приведем дополнительно несколько задач и вопросов на цикл Карно с решением.

Цикл (или процесс) Карно – это идеальный круговой цикл, состоящий из двух адиабат и двух изотерм. Назван так в честь французского инженера Сади Карно, который описал данный цикл в своем научном труде «О движущей силе огня и о машинах, способных развивать эту силу» (1894).

Задача на цикл Карно №1

Условие

Идеальная тепловая машина, работающая по циклу Карно, совершает за один цикл работу А = 73,5 кДж. Температура нагревателя t1 =100° С, температура холодильника t2 = 0° С. Найти КПД цикла, количество теплоты, получаемое машиной за один цикл от нагревателя, и количество теплоты, отдаваемое за один цикл холодильнику.

Решение

Рассчитаем КПД цикла: 

С другой стороны, чтобы найти количество теплоты, получаемое машиной, используем соотношение:

Количество теплоты, отданное холодильнику, будет равно разности общего количества теплоты и полезной работы:

Ответ: 0,36; 204,1 кДж; 130,6 кДж.

Задача на цикл Карно №2

Условие

Идеальная тепловая машина, работающая по циклу Карно, совершает за один цикл работу А=2,94 кДж и отдает за один цикл холодильнику количество теплоты Q2=13,4 кДж. Найти КПД цикла.

Решение

Формула для КПД цикла Карно:

Здесь A – совершенная работа, а Q1 – количество теплоты, которое понадобилось, чтобы ее совершить. Количество теплоты, которое идеальная машина отдает холодильнику, равно разности двух этих величин. Зная это, найдем:

Ответ: 17%.

Задача на цикл Карно №3

Условие

Изобразите цикл Карно на диаграмме и опишите его

Решение

Цикл Карно на диаграмме PV выглядит следующим образом:

  • 1-2. Изотермическое расширение, рабочее тело получает от нагревателя количество теплоты q1;
  • 2-3. Адиабатическое расширение, тепло не подводится;
  • 3-4. Изотермическое сжатие, в ходе которого тепло передается холодильнику;
  • 4-1. Адиабатическое сжатие.

Ответ: см. выше.

Вопрос на цикл Карно №1

Сформулируйте первую теорему Карно

Ответ. Первая теорема Карно гласит: КПД тепловой машины, работающей по циклу Карно, зависит только от температур нагревателя и холодильника, но не зависит ни от устройства машины, ни от вида или свойств её рабочего тела.

Вопрос на цикл Карно №2

Может ли коэффициент полезного действия в цикле Карно быть равным 100%?

Ответ. Нет. КПД цикла карно будет равен 100% только в случае, если температура холодильника будет равна абсолютному нулю, а это невозможно.

Если у вас остались вопросы по теме тепловых двигателей и цикла Карно, вы можете смело задавать их в комментариях. А если нужна помощь в решении задач или других примеров и заданий, обращайтесь в профессиональный студенческий сервис.

Источник: https://zaochnik-com.ru/blog/zadachi-na-kpd-teplovogo-dvigatelja-primery-reshenija/

Коэффициент полезного действия механизмов (КПД)

Известно, что вечный двигатель невозможен. Это связано с тем, что для любого механизма справедливо утверждение: совершённая с помощью этого механизма полная работа (в том числе на нагревание механизма и окружающей среды, на преодоление силы трения) всегда больше полезной работы.

Например, больше половины работы двигателя внутреннего сгорания совершается впустую тратится на нагревание составных частей двигателя; некоторое количество теплоты уносят выхлопные газы.

Часто необходимо оценивать эффективность механизма, целесообразность его использования. Поэтому, чтобы рассчитывать, какая часть от совершённой работы тратится впустую и какая часть с пользой,  вводится специальная физическая величина, которая показывает эффективность механизма.

Эта величина называется коэффициентом полезного действия механизма

Коэффициент полезного действия механизма равен отношению полезной работы к полной работе. Очевидно, коэффициент полезного действия всегда меньше единицы. Эту величину часто выражают в процентах. Обычно её обозначают греческой буквой η (читается «эта»). Сокращённо коэффициент полезного действия записывают КПД.

η = (А_полн /А_полезн) * 100 %,

где η КПД, А_полн полная работа, А_полезн полезная работа.

Среди двигателей наибольший коэффициент полезного действия имеет электрический двигатель (до 98 %). Коэффициент полезного действия двигателей внутреннего сгорания 20 % — 40 %, паровой турбины примерно 30 %.

Отметим, что для увеличения коэффициента полезного действия механизма часто стараются уменьшить силу трения. Это можно сделать, используя различные смазки или шарикоподшипники, в которых трение скольжения заменяется трением качения.

Примеры расчета КПД

Рассмотрим пример. Велосипедист массой 55 кг поднялся на велосипеде массой 5 кг на холм, высота которого 10 м, совершив при этом работу 8 кДж. Найдите коэффициент полезного действия велосипеда. Трение качения колёс о дорогу не учитывайте.

Решение. Найдём общую массу велосипеда и велосипедиста:

m = 55 кг + 5 кг = 60 кг

Найдем их общий вес:

P = mg = 60 кг * 10 Н/кг = 600 Н

Найдём работу, совершённую на подъём велосипеда и велосипедиста:

Aполезн = РS = 600 Н * 10 м = 6 кДж

Найдём КПД велосипеда:

= А_полн /А_полезн  * 100 %  = 6 кДж / 8 кДж * 100 % = 75 %

Ответ: КПД велосипеда равен 75 %.

Рассмотрим ещё один пример. На конец  плеча рычага подвешено тело массой m. К другому плечу прилагают силу F, направленную вниз, и его конец опускается на h. Найдите, насколько поднялось тело, если коэффициент полезного действия рычага равен η %.

Решение. Найдём работу, совершённую  силой F:

A = Fh

 η % от этой работы совершено на то, чтобы поднять тело массой m. Следовательно, на поднятие тела затрачено  Fhη / 100. Так как вес тела равен mg, тело поднялось на высоту Fhη / 100 / mg.

Ответ: тело поднялось на высоту Fhη / 100 / mg.

Нужна помощь в учебе?

Предыдущая тема: Приложение закона равновесия рычага к блоку: золотое правило механики
Следующая тема:   Энергия: потенциальная и кинетическая энергия

Источник: http://www.nado5.ru/e-book/koehfficient-poleznogo-deistviya-mekhanizmov

Кпд двигателя внутреннего сгорания. сколько приблизительно равен, а также мощность в процентах

Наверное, каждый задавался вопросом о КПД (Коэффициенте Полезного Действия) двигателя внутреннего сгорания. Ведь чем выше этот показатель, тем эффективнее работает силовой агрегат. Самым эффективным на данный момент времени считается электрический тип, его КПД может достигать до 90 – 95 %, а вот у моторов внутреннего сгорания, будь то дизель или бензин он мягко сказать, далек от идеала

ОГЛАВЛЕНИЕ СТАТЬИ

Если честно, то современные варианты моторов намного эффективнее своих собратьев, которые были выпущены лет так 10 назад, и причин этому масса. Сами подумайте раньше вариант 1,6 литра, выдавал всего 60 – 70 л.с. А сейчас это значение может достигать 130 – 150 л.с. Это кропотливая работа над увеличением КПД, в который каждый «шажок» дается методом проб и ошибок. Однако давайте начнем с определения.

КПД двигателя внутреннего сгорания – это значение отношения двух величин, мощности которая подается на коленчатый вал двигателя к мощности получаемой поршнем, за счет давления газов, которые образовались путем воспламенения топлива.

Если сказать простым языком, то это преобразование термической или тепловой энергии, которая появляется при сгорании топливной смеси (воздух и бензин) в механическую.

Нужно отметить что такое уже бывало, например у паровых силовых установок — также топливо под воздействием температуры толкало поршни агрегатов.

Однако там установки были в разы больше, да и само топливо было твердое (обычно уголь или дрова), что затрудняло его перевозку и эксплуатацию, постоянно нужно было «поддавать» в печь лопатами. Моторы внутреннего сгорания намного компактнее и легче «паровых», да и топливо намного проще хранить и перевозить.

Подробнее о потерях

Если забегать вперед, то можно уверенно сказать что КПД бензинового двигателя находится в пределах от 20 до 25 %. И на это много причин. Если взять поступающее топливо и пересчитать его на проценты, то мы как бы получаем «100% энергии», которая передается двигателю, а дальше пошли потери:

1) Топливная эффективность. Не все топливо сгорает, небольшая его часть уходит с отработанными газами, на этом уровне мы уже теряем до 25% КПД. Конечно, сейчас топливные системы улучшаются, появился инжектор, но и он далек от идеала.

2) Второе это тепловые потери. Двигатель прогревает себя и множество других элементов, такие как радиаторы, свой корпус, жидкость которая в нем циркулирует. Также часть тепла уходит с выхлопными газами. На все это еще до 35% потери КПД.

3) Третье это механические потери. НА всякого рода поршни, шатуны, кольца – все места, где есть трение. Сюда можно отнести и потери от нагрузки генератора, например чем больше электричества вырабатывает генератор, тем сильнее он тормозит вращение коленвала.  Конечно, смазки также шагнули вперед, но опять же полностью трение еще никому не удалось победить – потери еще 20 %

Таким образом, в сухом остатке, КПД равняется около 20%! Конечно из бензиновых вариантов есть выделяющиеся варианты, у которых этот показатель увеличен до 25%, но их не так много.

ТО есть если ваш автомобиль расходует топлива 10 литров на 100 км, то из них всего 2 литра уйдут непосредственно на работу, а остальные это потери!

Конечно можно увеличить мощность, например за счет расточки головки, смотрим небольшое видео.

Если вспомнить формулу то получается:

У какого двигателя самый большой КПД?

Теперь хочу поговорить о бензиновом и дизельном вариантах, и выяснить кто же из них наиболее эффективный.

Если сказать простыми, языком и не лезть в дебри технических терминов то – если сравнить два КПД бензинового и дизельного агрегатов – эффективнее из них, конечно же дизель и вот почему:

1) Бензиновый двигатель преобразует только 25 % энергии в механическую, а вот дизельный около 40%.

2) Если оснастить дизельный тип турбонаддувом, то можно достигнуть КПД в 50-53%, а это очень существенно.

Так почему он так эффективен? Все просто — не смотря на схожей тип работы (и тот и другой являются агрегатами внутреннего сгорания) дизель выполняет свою работу намного эффективнее. У него большее сжатие, да и топливо воспламеняется от другого принципа.

Он меньше нагревается, а значит происходит экономия на охлаждении, у него меньше клапанов (экономия на трении), также у него нет, привычных нам, катушек зажигания и свечей, а значит не требуется дополнительные энергетические затраты от генератора.

Работает он с меньшими оборотами, не нужно бешено раскручивать коленвал —  все это делает дизельный вариант чемпионом по КПД.

О топливной эффективности дизеля

ИЗ более высокого значения коэффициента полезного действия – следует и топливная эффективность. Так, например двигатель 1,6 литра может расходовать по городу всего 3 – 5 литров, в отличие от бензинового типа, где расход 7 – 12 литров.

У дизеля намного больше крутящий момент, сам двигатель зачастую компактнее и легче, а так же в последнее время и экологичнее.

Все эти положительные моменты, достигаются благодаря большему значению степени сжатия, есть прямая зависимость КПД и сжатия, смотрим небольшую табличку.

Однако не смотря на все плюсы у него также много и минусов.

Как становится понятно, КПД двигателя внутреннего сгорания далек от идеала, поэтому будущее однозначно за электрическими вариантами – осталось только найти эффективные аккумуляторы, которые не боятся мороза и долго держат заряд.

На этом заканчиваю, читайте наш АВТОБЛОГ.

(36

Источник: http://avto-blogger.ru/texchast/kpd-dvigatelya-vnutrennego-sgoraniya.html

Образовательный портал

:  4 / 5

Дмитриева Вера Владимировна,

учитель физики ГОУ лицей № 384 Кировского района Санкт – Петербурга

Скачать презентацию к уроку

Введение

Понятие «коэффициент полезного действия» впервые вводится в курсе физики в 7 классе. Использование современных образовательных технологий позволяет учащимся повысить мотивацию обучения и эффективность усвоения материала.

При проведении урока «Определение коэффициента полезного действия при подъеме тела по наклонной плоскости»использовалась технология исследования в обучении.

Урок  включает следующие этапы: актуализация знаний, изучение нового материала (выполнение лабораторной работы), проведение исследования, рефлексия.

В ходе урока использовалась работа в парах. Применение этой технологии позволило учащимся не только приобрести новые знания, но и развить способность к активному творчеству.

Цели и задачи урока

Задачи урока:

·        Актуализация знаний учащихся

·        Вызвать интерес к изучаемому материалу

·        Мотивировать деятельность учащихся

Цели:

Обучающие:

·        Познакомить учащихся с новой физической величиной – КПД механизма.

·        Убедиться на опытах, что полезная работа, выполненная с помощью наклонной плоскости, меньше затраченной работы.

·        Определить КПД при подъеме телапонаклонной плоскости.

·        Выяснить, от чего зависит КПД при подъеме телапонаклонной плоскости.

·        Проверить умение применять полученные знания для решения практических и исследовательских задач.

·        Показать связь изученного материала с жизнью.

Развивающие:

  • Создать условия для развития личности учеников в процессе их деятельности.
  • Способствовать развитию практических навыков и умений.
  • Формировать умение выдвигать гипотезу, проверять её.
  • Научить выделять главное, сравнивать, развить способности к обобщению, систематизации полученных знаний. Формировать умение работать в паре.

Воспитательные:

  • Развитие коммуникативных навыков.
  • Развитие навыков работы в команде (взаимоуважение, взаимопомощь и поддержка).

Здоровьесберегающие:

Выстраивание модели здоровьесберегающего урока.

Форма урока:Исследовательская работа учащихся.

Ход урока

·        Организационный момент.

·        Актуализация  знаний.  Разминка.

·        Выполнение лабораторной работы.

·        Физическая пауза.

·        Исследовательская часть работы.

·        Домашнее задание.

·        Закрепление изученного материала.

«Определение коэффициента полезного действия при подъеме тела по наклонной плоскости»

Предмет исследования: наклонная плоскость.

Цель исследования:рассчитать КПД при подъеме телапонаклонной плоскости.

Задачи исследования:

         — Рассчитать полезную работу.

         — Рассчитать затраченную работу.

         — Сравнить полезную и затраченную работу.

         — Рассчитать КПД при подъеме телапонаклонной плоскости.

Оборудование:Компьютер, мультимедийный проектор (для учителя)

·        Штатив

·        Доска

·        Брусок

·        Набор грузов

·        Динамометр

·        Мерная лента (линейка)

Изучение нового материала

1.      Познакомить учащихся с новой физической величиной – КПД механизма.

2.     Измерьте динамометром вес бруска Р

3.     Положите брусок на доску и динамометром тяните его равномерно вверх вдоль наклонной плоскости. Измерьте силу F. Вспомните, как правильно при этом пользоваться динамометром.

4.     Измерьте длину наклонной плоскости s.

5.     Рассчитайте полезную и затраченную работу.

6.     Вычислите коэффициент полезного действия при подъеме тела по наклонной плоскости.

7.     Данные запишите в таблицу № 1.

8.     Сделайте вывод.

Оформление результатов работы

Таблица 1.

Вес телаР, Н Высотаh, м Апол,Дж СилаF, Н Длинаs, м Азатр,Дж КПД, %
Вывод:

•         Полезная работа _______________, чем затраченная.

•         Коэффициент полезного действия при подъеме тела по наклонной плоскости       _____  %, т.е. это число показывает, что __________________________________________________________________.

4.  Физическая пауза.Слайды 22 — 25 

Примеры наклонной плоскости. Учащиеся смотрят слайды с примерами применения наклонной плоскости.

5.  Исследовательская работа. Слайды 26 – 30

•         Проблема. От чего может зависеть КПД наклонной плоскости?

•         Гипотеза. Если увеличить (уменьшить) высоту наклонной плоскости, то КПД при подъеме тела по наклонной плоскости не изменится (увеличится, уменьшится).

•         Если увеличить (уменьшить) вес тела, то КПД при подъеме тела по наклонной плоскости не изменится (увеличится, уменьшится).

Учащиеся выбирают один из предложенных вариантов исследования:

•         Как зависит КПД при подъеме тела по наклонной плоскости от высоты наклонной плоскости?

•          Как зависит КПД при подъеме тела по наклонной плоскостиот веса тела?

Оформление результатов работы

Таблица 2.

Вес телаР, Н Высотаh, м Апол,Дж СилаF, Н Длинаs, м Азатр,Дж КПД, %
Вывод:

Вывод:

КПД при подъеме тела по наклонной плоскости зависит (не зависит) от высоты наклонной плоскости. Чем больше (меньше) высота наклонной плоскости, тем КПД __________.

КПД при подъеме тела по наклонной плоскостизависит (не зависит) от веса тела. Чем больше (меньше) вес тела, тем КПД __________.

Обсуждение вариантов исследования.

6.  Домашнее задание.  Слайды 31 — 32

 Параграф 60, 61, задача 474.

 Для желающих подготовить сообщения.

·        Простые механизмы у меня дома

·        Устройство мясорубки

·        Простые механизмы на даче

·        Простые механизмы в строительстве

·        Простые механизмы и тело человека

7.  Закрепление изученного материала   Слайды  31 – 34
Работа с текстом [2]

При использовании _________________ механизмов человек совершает _______________. Простые механизмы позволяют получить выигрыш ______________ . При этом во сколько раз ________________ в силе, во столько же раз _________________________________. В этом состоит ___________________________________ механики.

Оно формулируется так: __________________________________________________________________________________________________________________________________________________________. Обычно при движении тела ______________________________ трения. Поэтому величина _____________________ работы всегда больше ____________________ .

Отношение ________________________________________ к ______________________, выраженное в процентах, называется  _______________________________________________________________________________________ : ______________.

Мини – тест.

Ваш КПД сегодня на уроке

1.     100%

2.     больше 100%

3.     меньше 100%

4.     0%

ЭТО ИНТЕРЕСНО:  Как найти сопротивление формула

Литература

1 А.В.Перышкин Физика 7 класс. М.: Дрофа, 2010

2 Г.Н.Степанова Физика 7 рабочая тетрадь ч.1. СПб СТП-Школа, 2003

Источник: http://ext.spb.ru/2011-03-29-09-03-14/96-2011-12-05-14-05-58/780-2011-10-27-20-01-16.html

Кпд доклад по физике , Коэффициент полезного действия механизма — урок. Физика, 7 класс

Что такое Wiki-учебник? Обрати внимание! Политика конфиденциальности Описание Википедии Отказ от ответственности Свяжитесь с нами Разработчики Заявление о куки Мобильная версия. Примеры расчета КПД Рассмотрим пример. Его автором является древнегреческий ученый Герон Александрийский, живший в I в. Поиск по сайту.

Глава 1. Тепловые явления. Для этого уменьшают трение в осях механизмов и их массу. В тех случаях, когда трение ничтожно мало и используемые механизмы имеют массу, пренебрежимо малую по сравнению с массой поднимаемого груза, коэффициент полезного действия оказывается лишь немного меньше 1.

В этом случае затраченную работу можно считать примерно равной полезной работе: Следует помнить, что выигрыша в работе с помощью простого механизма получить. Поскольку каждую из работ в равенстве Этот закон называют «золотым правилом» механики. Его автором является древнегреческий ученый Герон Александрийский, живший в I.

7 кл — 44. Коэффициент полезного действия механизма

Тем не менее оно бывает очень полезным при анализе работы любого простого механизма. Так, например, благодаря этому правилу мы сразу можем сказать, что рабочему, изображенному на рисунке 47, при двукратном выигрыше в силе для подъема груза на 10 см придется опустить противоположный конец рычага на 20 см.

Наибольшим КПД среди циклических машин, оперирующих при заданных температурах нагревателя T 1 и холодильника T 2обладают тепловые двигатели, работающие по циклу Карно ; этот предельный КПД равен.

Не все показатели, характеризующие эффективность энергетических процессов, соответствуют вышеприведённому описанию. КПД котлов на органическом топливе традиционно рассчитывается по низшей теплоте сгорания ; при этом предполагается, что влага продуктов сгорания покидает котёл в виде перегретого пара.

Обрати внимание! Полезная работа всегда составляет лишь некоторую часть полной работы, которую совершает человек, используя механизм.

В конденсационных котлах эта влага конденсируется, теплота конденсации полезно используется. При расчёте КПД по низшей теплоте сгорания он в итоге может получиться больше единицы. Учебные заведения. Проверочные работы.

Отправить отзыв. Рассмотрим пример. Велосипедист массой 55 кг поднялся на велосипеде массой 5 кг на холм, высота которого 10 м, совершив при этом работу 8 кДж.

§24. КПД теплового двигателя. Задание №doc-4, ГДЗ по физике за 8 класс к учебнику Пёрышкина

Найдите коэффициент полезного действия велосипеда. Трение качения колёс о дорогу не учитывайте.

Коэффициент полезного действия

Найдём общую массу велосипеда и велосипедиста:. Рассмотрим ещё один пример.

К другому плечу прилагают силу F, направленную вниз, и его конец опускается на h. Репетиторы О сайте Цены Библиотека Wiki-учебник. Оставить заявку на подбор репетитора.

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии , проверенной 22 июля ; проверки требует 1 правка. В связи с этим второй вариант записи формулы менее предпочтителен одна и та же физическая величина может быть выражена в различных единицах независимо от формул, где она участвует. Конструируя механизмы, стремятся увеличить их КПД.

Источник: http://veresov-gallery.ru/7536-kpd-doklad-po-fizike.php

Формула КПД (коэффициента полезного действия)

В реальной действительности работа, совершаемая при помощи какого — либо устройства, всегда больше полезной работы, так как часть работы выполняется против сил трения, которые действуют внутри механизма и при перемещении его отдельных частей. Так, применяя подвижный блок, совершают дополнительную работу, поднимая сам блок и веревку и, преодолевая силы трения в блоке.

Введем следующие обозначения: полезную работу обозначим $A_p$, полную работу — $A_{poln}$. При этом имеем:

Определение и формула КПД Определение

Коэффициентом полезного действия (КПД) называют отношение полезной работы к полной. Обозначим КПД буквой $\eta $, тогда:

\[\eta =\frac{A_p}{A_{poln}}\ \left(2\right).\]

Чаще всего коэффициент полезного действия выражают в процентах, тогда его определением является формула:

\[\eta =\frac{A_p}{A_{poln}}\cdot 100\%\ \left(2\right).\]

При создании механизмов пытаются увеличить их КПД, но механизмов с коэффициентом полезного действия равным единице (а тем более больше единицы) не существует.

И так, коэффициент полезного действия — это физическая величина, которая показывает долю, которую полезная работа составляет от всей произведенной работы. При помощи КПД оценивают эффективность устройства (механизма, системы), преобразующей или передающей энергию, совершающего работу.

Для увеличения КПД механизмов можно пытаться уменьшать трение в их осях, их массу. Если трением можно пренебречь, масса механизма существенно меньше, чем масса, например, груза, который поднимает механизм, то КПД получается немного меньше единицы. Тогда произведенная работа примерно равна полезной работе:

\[A_p\approx A_{poln}\left(3\right).\]

Золотое правило механики

Необходимо помнить, что выигрыша в работе, используя простой механизм добиться нельзя.

Выразим каждую из работ в формуле (3) как произведение соответствующей силы на путь, пройденный под воздействием этой силы, тогда формулу (3) преобразуем к виду:

\[F_1s_1\approx F_2s_2\left(4\right).\]

Выражение (4) показывает, что используя простой механизм, мы выигрываем в силе столько же, сколько проигрываем в пути. Данный закон называют «золотым правилом» механики. Это правило сформулировал в древней Греции Герон Александрийский.

Это правило не учитывает работу по преодолению сил трения, поэтому является приближенным.

Кпд при передаче энергии

Коэффициент полезного действия можно определить как отношение полезной работы к затраченной на ее выполнение энергии ($Q$):

\[\eta =\frac{A_p}{Q}\cdot 100\%\ \left(5\right).\]

Для вычисления коэффициента полезного действия теплового двигателя применяют следующую формулу:

\[\eta =\frac{Q_n-Q_{ch}}{Q_n}\left(6\right),\]

где $Q_n$ — количество теплоты, полученное от нагревателя; $Q_{ch}$ — количество теплоты переданное холодильнику.

КПД идеальной тепловой машины, которая работает по циклу Карно равно:

\[\eta =\frac{T_n-T_{ch}}{T_n}\left(7\right),\]

где $T_n$ — температура нагревателя; $T_{ch}$ — температура холодильника.

Примеры задач на коэффициент полезного действия

Пример 1

Задание. Двигатель подъемного крана имеет мощность $N$. За отрезок времени равный $\Delta t$ он поднял груз массой $m$ на высоту $h$. Каким является КПД крана?\textit{}

Решение. Полезная работа в рассматриваемой задаче равна работе по подъему тела на высоту $h$ груза массы $m$, это работа по преодолению силы тяжести. Она равна:

\[A_p=mgh\ \left(1.1\right).\]

Полную работу, которая выполняется при поднятии груза, найдем, используя определение мощности:

\[N=\frac{A_{poln}}{\Delta t}\to A_{poln}=N\Delta t\left(1.2\right).\]

Воспользуемся определением коэффициента полезного действия для его нахождения:

\[\eta =\frac{A_p}{A_{poln}}\cdot 100\%\left(1.3\right).\]

Формулу (1.3) преобразуем, используя выражения (1.1) и (1.2):

\[\eta =\frac{mgh}{N\Delta t}\cdot 100\%.\]

Ответ. $\eta =\frac{mgh}{N\Delta t}\cdot 100\%$

    Пример 2

Задание. Идеальный газ выполняет цикл Карно, при этом КПД цикла равно $\eta $. Какова работа в цикле сжатия газа при постоянной температуре? Работа газа при расширении равна $A_0$

Решение. Коэффициент полезного действия цикла определим как:

\[\eta =\frac{A_p}{Q}\left(2.1\right).\]

Рассмотрим цикл Карно, определим, в каких процессах тепло подводят (это будет $Q$).

Так как цикл Карно состоит из двух изотерм и двух адиабат, можно сразу сказать, что в адиабатных процессах (процессы 2-3 и 4-1) теплообмена нет. В изотермическом процессе 1-2 тепло подводят (рис.1 $Q_1$), в изотермическом процессе 3-4 тепло отводят ($Q_2$). Получается, что в выражении (2.1) $Q=Q_1$. Мы знаем, что количество теплоты (первое начало термодинамики), подводимое системе при изотермическом процессе идет полностью на выполнение газом работы, значит:

\[Q=Q_1=A_{12}\left(2.2\right).\]

Газ совершает полезную работу, которую равна:

\[A_p=Q_1-Q_2\left(2.3\right).\]

Количество теплоты, которое отводят в изотермическом процессе 3-4 равно работе сжатия (работа отрицательна) (так как T=const, то $Q_2=-A_{34}$). В результате имеем:

\[A_p=A_{12}+A_{34}\left(2.4\right).\]

Преобразуем формулу (2.1) учитывая результаты (2.2) — (2.4):

\[\eta =\frac{A_{12}+A_{34}}{A_{12}}\to A_{12}\eta =A_{12}+A_{34}\to A_{34}=(\eta -1)A_{12}\left(2.4\right).\]

Так как по условию $A_{12}=A_0,\ $окончательно получаем:

\[A_{34}=\left(\eta -1\right)A_0.\]

Ответ. $A_{34}=\left(\eta -1\right)A_0$

   

Читать дальше: формула линейной скорости.

Источник: https://www.webmath.ru/poleznoe/fizika/fizika_132_formula_kojefficienta_poleznogo_dejstvija.php

II. Молекулярная физика

Двигатель, в котором происходит превращение внутренней энергии топлива, которое сгорает, в механическую работу.

Любой тепловой двигатель состоит из трех основных частей: нагревателя, рабочего тела (газ, жидкость и др.) и холодильника. В основе работы двигателя лежит циклический процесс (это процесс, в результате которого система возвращается в исходное состояние).

Прямой цикл теплового двигателя

Общее свойство всех циклических (или круговых) процессов состоит в том, что их невозможно провести, приводя рабочее тело в тепловой контакт только с одним тепловым резервуаром. Их нужно, по крайней мере, два. Тепловой резервуар с более высокой температурой называют нагревателем, а с более низкой – холодильником.

Совершая круговой процесс, рабочее тело получает от нагревателя некоторое количество теплоты Q1 (происходит расширение) и отдает холодильнику количество теплоты Q2, когда возвращается в исходное состояние и сжимается.

Полное количество теплоты Q=Q1-Q2, полученное рабочим телом за цикл, равно работе, которую выполняет рабочее тело за один цикл.

Обратный цикл холодильной машины

При обратном цикле расширение происходит при меньшем давлении, а сжатие — при большем. Поэтому работа сжатия больше, чем работа расширения, работу выполняет не рабочее тело, а внешние силы. Эта работа превращается в теплоту. Таким образом, в холодильной машине рабочее тело забирает от холодильника некоторое количество теплоты Q1 и передает нагревателю большее количество теплоты Q2.

Цикл Карно

В тепловых двигателях стремятся достигнуть наиболее полного превращения тепловой энергии в механическую. Максимальное КПД.

На рисунке изображены циклы, используемые в бензиновом карбюраторном двигателе и в дизельном двигателе. В обоих случаях рабочим телом является смесь паров бензина или дизельного топлива с воздухом.

Цикл карбюраторного двигателя внутреннего сгорания состоит из двух изохор (1–2, 3–4) и двух адиабат (2–3, 4–1). Дизельный двигатель внутреннего сгорания работает по циклу, состоящему из двух адиабат (1–2, 3–4), одной изобары (2–3) и одной изохоры (4–1).

Реальный коэффициент полезного действия у карбюраторного двигателя порядка 30%, у дизельного двигателя – порядка 40 %.

Французский физик С.Карно разработал работу идеального теплового двигателя. Рабочую часть двигателя Карно можно представить себе в виде поршня в заполненном газом цилиндре. Поскольку двигатель Карно — машина чисто теоретическая, то есть идеальная, силы трения между поршнем и цилиндром и тепловые потери считаются равными нулю. Механическая работа максимальна, если рабочее тело выполняет цикл, состоящий из двух изотерм и двух адиабат. Этот цикл называют циклом Карно.

участок 1-2: газ получает от нагревателя количество теплоты Q1 и изотермически расширяется при температуре T1
участок 2-3: газ адиабатически расширяется, температура снижается до температуры холодильника T2
участок 3-4: газ экзотермически сжимается, при этом он отдает холодильнику количество теплоты Q2
участок 4-1: газ сжимается адиабатически до тех пор, пока его температура не повысится до T1.
Работа, которую выполняет рабочее тело — площадь полученной фигуры 1234.

Функционирует такой двигатель следующим образом:

1. Сначала цилиндр вступает в контакт с горячим резервуаром, и идеальный газ расширяется при постоянной температуре. На этой фазе газ получает от горячего резервуара некое количество тепла.2. Затем цилиндр окружается идеальной теплоизоляцией, за счет чего количество тепла, имеющееся у газа, сохраняется, и газ продолжает расширяться, пока его температура не упадет до температуры холодного теплового резервуара.3.

На третьей фазе теплоизоляция снимается, и газ в цилиндре, будучи в контакте с холодным резервуаром, сжимается, отдавая при этом часть тепла холодному резервуару.

4. Когда сжатие достигает определенной точки, цилиндр снова окружается теплоизоляцией, и газ сжимается за счет поднятия поршня до тех пор, пока его температура не сравняется с температурой горячего резервуара.

После этого теплоизоляция удаляется и цикл повторяется вновь с первой фазы.

КПД цикла Карно не зависит от вида рабочего тела

для холодильной машины

В реальных тепловых двигателях нельзя создать условия, при которых их рабочий цикл был бы циклом Карно. Так как процессы в них происходят быстрее, чем это необходимо для изотермического процесса, и в то же время не настолько быстрые, чтоб быть адиабатическими.

Источник: http://fizmat.by/kursy/termodinamika/teplovye_dvigateli

Коэффициент полезного действия

Источник: https://remont220.ru/osnovy-elektrotehniki/976-kpd-fizicheskiy-smysl-velichiny-kak-ee-vychislyat/

Формула полезной работы в физике для КПД

Формула полезной работы в физике для КПД

Формула полезной работы в физике для КПД

Формула полезной работы в физике для КПД

Определение 1

КПД (коэффициент полезного действия) — величина, характеризующая соотношение используемой энергии к затрачиваемой, т.е. энергетическую эффективность системы.

КПД измеряется в процентах или указывается как десятичная дробь от 0 до 1. КПД 50% (или, что тоже самое– 0,5) означает, что только половина энергии используется для выполнения работы. Остальная рассеивается в окружающем пространстве, как правило, в форме тепла.

Замечание 1

Коэффициент полезного действия паровозов, применявшихся для железнодорожных перевозок в XIX — первой половине XX вв., составлял менее 10%, т.е. 90 и более процентов тепла от сжигаемого в топках угля улетучивалось в атмосферу, не выполняя полезной работы по вращению колес, приводящему к движению состав. Для сравнения: КПД пришедших на смену паровозам тепловозов (в них используются не паровые, а дизельные двигатели) достигает 40%.

КПД в формулах обозначают греческой буквой $\eta$ (эта).

$\eta = \frac{A_п}{A_з}$

, где $A_п$ — полезная работа, $A_з$ — затраченная.

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

Полезная работа и потери энергии

Тепловые машины

Тепловые машины

Тепловые машины

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: принципы действия тепловых машин, КПД тепловой машины, тепловые двигатели и охрана окружающей среды

Задачи на КПД теплового двигателя: примеры решений

У нас уже была внутренняя энергия и первое начало термодинамики, а сегодня разберемся с задачами на КПД теплового двигателя. Что поделать: праздники праздниками, но сессию ведь никто не отменял.

Присоединяйтесь к нам в телеграме и получайте полезную рассылку каждый день. А приступая к практике, не забывайте держать под рукой памятку по задачам и полезные формулы.

Задачи по физике на КПД теплового двигателя

Задача на вычисление КПД теплового двигателя №1

Условие 

Вода массой 175 г подогревается на спиртовке. Пока вода нагрелась от t1=15 до t2=75 градусов Цельсия, масса спиртовки уменьшилась с 163 до 157 г Вычислите КПД установки.

Решение

Коэффициент полезного действия можно вычислить как отношение полезной работы и полного количества теплоты, выделенного спиртовкой:

Полезная работа в данном случае – это эквивалент количества теплоты, которое пошло исключительно на нагрев. Его можно вычислить по известной формуле:

Полное количество теплоты вычисляем, зная массу сгоревшего спирта и его удельную теплоту сгорания.

Подставляем значения и вычисляем:

Ответ: 27%

Задача на вычисление КПД теплового двигателя №2

Условие

Старый двигатель совершил работу 220,8 МДж, при этом израсходовав 16 килограмм бензина. Вычислите КПД двигателя.

Решение

Найдем общее количество теплоты, которое произвел двигатель:

Теперь можно рассчитать КПД:

Или, умножая на 100, получаем значение КПД в процентах:

Ответ: 30%.

Задача на вычисление КПД теплового двигателя №3

Условие

Тепловая машина работает по циклу Карно, при этом 80% теплоты, полученной от нагревателя, передается холодильнику. За один цикл рабочее тело получает от нагревателя 6,3 Дж теплоты. Найдите работу и КПД цикла.

Решение

КПД идеальной тепловой машины:

По условию:

Вычислим сначала работу, а затем КПД:

Ответ: 20%; 1,26 Дж.

Задача на вычисление КПД теплового двигателя №4

Условие

На диаграмме изображен цикл дизельного двигателя, состоящий из адиабат 1–2 и 3–4, изобары 2–3 и изохоры 4–1. Температуры газа в точках 1, 2, 3, 4 равны T1 , T2 , T3 , T4 соответственно. Найдите КПД цикла.

Решение

Проанализируем цикл, а КПД будем вычислять через подведенное и отведенное количество теплоты. На адиабатах тепло не подводится и не отводится. На изобаре 2 – 3 тепло подводится, объем растет и, соответственно, растет температура. На изохоре 4 – 1 тепло отводится, а давление и температура падают.

Аналогично:

Получим результат:

Ответ: См. выше.

Задача на вычисление КПД теплового двигателя №5

Условие

Тепловая машина, работающая по циклу Карно, совершает за один цикл работу А = 2,94 кДж и отдаёт за один цикл охладителю количество теплоты Q2 = 13,4 кДж. Найдите КПД цикла.

Решение

Запишем формулу для КПД:

Отсюда:

Ответ: 18%

Вопросы на тему тепловые двигатели

Вопрос 1. Что такое тепловой двигатель?

Ответ. Тепловой двигатель – это машина, которая совершает работу за счет энергии, поступающей к ней в процессе теплопередачи. Основные части теплового двигателя: нагреватель, холодильник и рабочее тело.

Вопрос 2. Приведите примеры тепловых двигателей.

Ответ. Первыми тепловыми двигателями, получившими широкое распространение, были паровые машины. Примерами современного теплового двигателя могут служить:

  • ракетный двигатель;
  • авиационный двигатель;
  • газовая турбина.

Вопрос 3. Может ли КПД двигателя быть равен единице?

Ответ. Нет. КПД всегда меньше единицы (или меньше 100%). Существование двигателя с КПД равным единице противоречит первому началу термодинамики.

КПД реальных двигателей редко превышает 30%.

Вопрос 4. Что такое КПД?

Ответ. КПД (коэффициент полезного действия) – отношение работы, которую совершает двигатель, к количеству теплоты, полученному от нагревателя.

Вопрос 5. Что такое удельная теплота сгорания топлива?

Ответ. Удельная теплота сгорания q – физическая величина, которая показывает, какое количество теплоты выделяется при сгорании топлива массой 1 кг. При решении задач КПД можно определять по мощности двигателя N и сжигаемому за единицу времени количеству топлива.

Задачи и вопросы на цикл Карно

Затрагивая тему тепловых двигателей, невозможно оставить в стороне цикл Карно – пожалуй, самый знаменитый цикл работы тепловой машины в физике. Приведем дополнительно несколько задач и вопросов на цикл Карно с решением.

Цикл (или процесс) Карно – это идеальный круговой цикл, состоящий из двух адиабат и двух изотерм. Назван так в честь французского инженера Сади Карно, который описал данный цикл в своем научном труде «О движущей силе огня и о машинах, способных развивать эту силу» (1894).

Задача на цикл Карно №1

Условие

Идеальная тепловая машина, работающая по циклу Карно, совершает за один цикл работу А = 73,5 кДж. Температура нагревателя t1 =100° С, температура холодильника t2 = 0° С. Найти КПД цикла, количество теплоты, получаемое машиной за один цикл от нагревателя, и количество теплоты, отдаваемое за один цикл холодильнику.

Решение

Рассчитаем КПД цикла: 

С другой стороны, чтобы найти количество теплоты, получаемое машиной, используем соотношение:

Количество теплоты, отданное холодильнику, будет равно разности общего количества теплоты и полезной работы:

Ответ: 0,36; 204,1 кДж; 130,6 кДж.

Задача на цикл Карно №2

Условие

Идеальная тепловая машина, работающая по циклу Карно, совершает за один цикл работу А=2,94 кДж и отдает за один цикл холодильнику количество теплоты Q2=13,4 кДж. Найти КПД цикла.

Решение

Формула для КПД цикла Карно:

Здесь A – совершенная работа, а Q1 – количество теплоты, которое понадобилось, чтобы ее совершить. Количество теплоты, которое идеальная машина отдает холодильнику, равно разности двух этих величин. Зная это, найдем:

Ответ: 17%.

Задача на цикл Карно №3

Условие

Изобразите цикл Карно на диаграмме и опишите его

Решение

Цикл Карно на диаграмме PV выглядит следующим образом:

  • 1-2. Изотермическое расширение, рабочее тело получает от нагревателя количество теплоты q1;
  • 2-3. Адиабатическое расширение, тепло не подводится;
  • 3-4. Изотермическое сжатие, в ходе которого тепло передается холодильнику;
  • 4-1. Адиабатическое сжатие.

Ответ: см. выше.

Вопрос на цикл Карно №1

Сформулируйте первую теорему Карно

Ответ. Первая теорема Карно гласит: КПД тепловой машины, работающей по циклу Карно, зависит только от температур нагревателя и холодильника, но не зависит ни от устройства машины, ни от вида или свойств её рабочего тела.

Вопрос на цикл Карно №2

Может ли коэффициент полезного действия в цикле Карно быть равным 100%?

Ответ. Нет. КПД цикла карно будет равен 100% только в случае, если температура холодильника будет равна абсолютному нулю, а это невозможно.

Если у вас остались вопросы по теме тепловых двигателей и цикла Карно, вы можете смело задавать их в комментариях. А если нужна помощь в решении задач или других примеров и заданий, обращайтесь в профессиональный студенческий сервис.

Источник: https://zaochnik-com.ru/blog/zadachi-na-kpd-teplovogo-dvigatelja-primery-reshenija/

Коэффициент полезного действия механизмов (КПД)

Известно, что вечный двигатель невозможен. Это связано с тем, что для любого механизма справедливо утверждение: совершённая с помощью этого механизма полная работа (в том числе на нагревание механизма и окружающей среды, на преодоление силы трения) всегда больше полезной работы.

Например, больше половины работы двигателя внутреннего сгорания совершается впустую тратится на нагревание составных частей двигателя; некоторое количество теплоты уносят выхлопные газы.

Часто необходимо оценивать эффективность механизма, целесообразность его использования. Поэтому, чтобы рассчитывать, какая часть от совершённой работы тратится впустую и какая часть с пользой,  вводится специальная физическая величина, которая показывает эффективность механизма.

Эта величина называется коэффициентом полезного действия механизма

Коэффициент полезного действия механизма равен отношению полезной работы к полной работе. Очевидно, коэффициент полезного действия всегда меньше единицы. Эту величину часто выражают в процентах. Обычно её обозначают греческой буквой η (читается «эта»). Сокращённо коэффициент полезного действия записывают КПД.

η = (А_полн /А_полезн) * 100 %,

где η КПД, А_полн полная работа, А_полезн полезная работа.

Среди двигателей наибольший коэффициент полезного действия имеет электрический двигатель (до 98 %). Коэффициент полезного действия двигателей внутреннего сгорания 20 % — 40 %, паровой турбины примерно 30 %.

Отметим, что для увеличения коэффициента полезного действия механизма часто стараются уменьшить силу трения. Это можно сделать, используя различные смазки или шарикоподшипники, в которых трение скольжения заменяется трением качения.

Примеры расчета КПД

Рассмотрим пример. Велосипедист массой 55 кг поднялся на велосипеде массой 5 кг на холм, высота которого 10 м, совершив при этом работу 8 кДж. Найдите коэффициент полезного действия велосипеда. Трение качения колёс о дорогу не учитывайте.

Решение. Найдём общую массу велосипеда и велосипедиста:

m = 55 кг + 5 кг = 60 кг

Найдем их общий вес:

P = mg = 60 кг * 10 Н/кг = 600 Н

Найдём работу, совершённую на подъём велосипеда и велосипедиста:

Aполезн = РS = 600 Н * 10 м = 6 кДж

Найдём КПД велосипеда:

= А_полн /А_полезн  * 100 %  = 6 кДж / 8 кДж * 100 % = 75 %

Ответ: КПД велосипеда равен 75 %.

Рассмотрим ещё один пример. На конец  плеча рычага подвешено тело массой m. К другому плечу прилагают силу F, направленную вниз, и его конец опускается на h. Найдите, насколько поднялось тело, если коэффициент полезного действия рычага равен η %.

Решение. Найдём работу, совершённую  силой F:

A = Fh

 η % от этой работы совершено на то, чтобы поднять тело массой m. Следовательно, на поднятие тела затрачено  Fhη / 100. Так как вес тела равен mg, тело поднялось на высоту Fhη / 100 / mg.

Ответ: тело поднялось на высоту Fhη / 100 / mg.

Нужна помощь в учебе?

Предыдущая тема: Приложение закона равновесия рычага к блоку: золотое правило механики
Следующая тема:   Энергия: потенциальная и кинетическая энергия

Источник: http://www.nado5.ru/e-book/koehfficient-poleznogo-deistviya-mekhanizmov

Кпд двигателя внутреннего сгорания. сколько приблизительно равен, а также мощность в процентах

Наверное, каждый задавался вопросом о КПД (Коэффициенте Полезного Действия) двигателя внутреннего сгорания. Ведь чем выше этот показатель, тем эффективнее работает силовой агрегат. Самым эффективным на данный момент времени считается электрический тип, его КПД может достигать до 90 – 95 %, а вот у моторов внутреннего сгорания, будь то дизель или бензин он мягко сказать, далек от идеала

ОГЛАВЛЕНИЕ СТАТЬИ

Если честно, то современные варианты моторов намного эффективнее своих собратьев, которые были выпущены лет так 10 назад, и причин этому масса. Сами подумайте раньше вариант 1,6 литра, выдавал всего 60 – 70 л.с. А сейчас это значение может достигать 130 – 150 л.с. Это кропотливая работа над увеличением КПД, в который каждый «шажок» дается методом проб и ошибок. Однако давайте начнем с определения.

КПД двигателя внутреннего сгорания – это значение отношения двух величин, мощности которая подается на коленчатый вал двигателя к мощности получаемой поршнем, за счет давления газов, которые образовались путем воспламенения топлива.

Если сказать простым языком, то это преобразование термической или тепловой энергии, которая появляется при сгорании топливной смеси (воздух и бензин) в механическую.

Нужно отметить что такое уже бывало, например у паровых силовых установок — также топливо под воздействием температуры толкало поршни агрегатов.

Однако там установки были в разы больше, да и само топливо было твердое (обычно уголь или дрова), что затрудняло его перевозку и эксплуатацию, постоянно нужно было «поддавать» в печь лопатами. Моторы внутреннего сгорания намного компактнее и легче «паровых», да и топливо намного проще хранить и перевозить.

Подробнее о потерях

Если забегать вперед, то можно уверенно сказать что КПД бензинового двигателя находится в пределах от 20 до 25 %. И на это много причин. Если взять поступающее топливо и пересчитать его на проценты, то мы как бы получаем «100% энергии», которая передается двигателю, а дальше пошли потери:

1) Топливная эффективность. Не все топливо сгорает, небольшая его часть уходит с отработанными газами, на этом уровне мы уже теряем до 25% КПД. Конечно, сейчас топливные системы улучшаются, появился инжектор, но и он далек от идеала.

2) Второе это тепловые потери. Двигатель прогревает себя и множество других элементов, такие как радиаторы, свой корпус, жидкость которая в нем циркулирует. Также часть тепла уходит с выхлопными газами. На все это еще до 35% потери КПД.

3) Третье это механические потери. НА всякого рода поршни, шатуны, кольца – все места, где есть трение. Сюда можно отнести и потери от нагрузки генератора, например чем больше электричества вырабатывает генератор, тем сильнее он тормозит вращение коленвала.  Конечно, смазки также шагнули вперед, но опять же полностью трение еще никому не удалось победить – потери еще 20 %

Таким образом, в сухом остатке, КПД равняется около 20%! Конечно из бензиновых вариантов есть выделяющиеся варианты, у которых этот показатель увеличен до 25%, но их не так много.

ТО есть если ваш автомобиль расходует топлива 10 литров на 100 км, то из них всего 2 литра уйдут непосредственно на работу, а остальные это потери!

Конечно можно увеличить мощность, например за счет расточки головки, смотрим небольшое видео.

Если вспомнить формулу то получается:

У какого двигателя самый большой КПД?

Теперь хочу поговорить о бензиновом и дизельном вариантах, и выяснить кто же из них наиболее эффективный.

Если сказать простыми, языком и не лезть в дебри технических терминов то – если сравнить два КПД бензинового и дизельного агрегатов – эффективнее из них, конечно же дизель и вот почему:

1) Бензиновый двигатель преобразует только 25 % энергии в механическую, а вот дизельный около 40%.

2) Если оснастить дизельный тип турбонаддувом, то можно достигнуть КПД в 50-53%, а это очень существенно.

Так почему он так эффективен? Все просто — не смотря на схожей тип работы (и тот и другой являются агрегатами внутреннего сгорания) дизель выполняет свою работу намного эффективнее. У него большее сжатие, да и топливо воспламеняется от другого принципа.

Он меньше нагревается, а значит происходит экономия на охлаждении, у него меньше клапанов (экономия на трении), также у него нет, привычных нам, катушек зажигания и свечей, а значит не требуется дополнительные энергетические затраты от генератора.

Работает он с меньшими оборотами, не нужно бешено раскручивать коленвал —  все это делает дизельный вариант чемпионом по КПД.

О топливной эффективности дизеля

ИЗ более высокого значения коэффициента полезного действия – следует и топливная эффективность. Так, например двигатель 1,6 литра может расходовать по городу всего 3 – 5 литров, в отличие от бензинового типа, где расход 7 – 12 литров.

У дизеля намного больше крутящий момент, сам двигатель зачастую компактнее и легче, а так же в последнее время и экологичнее.

Все эти положительные моменты, достигаются благодаря большему значению степени сжатия, есть прямая зависимость КПД и сжатия, смотрим небольшую табличку.

Однако не смотря на все плюсы у него также много и минусов.

Как становится понятно, КПД двигателя внутреннего сгорания далек от идеала, поэтому будущее однозначно за электрическими вариантами – осталось только найти эффективные аккумуляторы, которые не боятся мороза и долго держат заряд.

На этом заканчиваю, читайте наш АВТОБЛОГ.

(36

Источник: http://avto-blogger.ru/texchast/kpd-dvigatelya-vnutrennego-sgoraniya.html

Образовательный портал

:  4 / 5

Дмитриева Вера Владимировна,

учитель физики ГОУ лицей № 384 Кировского района Санкт – Петербурга

Скачать презентацию к уроку

Введение

Понятие «коэффициент полезного действия» впервые вводится в курсе физики в 7 классе. Использование современных образовательных технологий позволяет учащимся повысить мотивацию обучения и эффективность усвоения материала.

При проведении урока «Определение коэффициента полезного действия при подъеме тела по наклонной плоскости»использовалась технология исследования в обучении.

Урок  включает следующие этапы: актуализация знаний, изучение нового материала (выполнение лабораторной работы), проведение исследования, рефлексия.

В ходе урока использовалась работа в парах. Применение этой технологии позволило учащимся не только приобрести новые знания, но и развить способность к активному творчеству.

Цели и задачи урока

Задачи урока:

·        Актуализация знаний учащихся

·        Вызвать интерес к изучаемому материалу

·        Мотивировать деятельность учащихся

Цели:

Обучающие:

·        Познакомить учащихся с новой физической величиной – КПД механизма.

·        Убедиться на опытах, что полезная работа, выполненная с помощью наклонной плоскости, меньше затраченной работы.

·        Определить КПД при подъеме телапонаклонной плоскости.

·        Выяснить, от чего зависит КПД при подъеме телапонаклонной плоскости.

·        Проверить умение применять полученные знания для решения практических и исследовательских задач.

·        Показать связь изученного материала с жизнью.

Развивающие:

  • Создать условия для развития личности учеников в процессе их деятельности.
  • Способствовать развитию практических навыков и умений.
  • Формировать умение выдвигать гипотезу, проверять её.
  • Научить выделять главное, сравнивать, развить способности к обобщению, систематизации полученных знаний. Формировать умение работать в паре.

Воспитательные:

  • Развитие коммуникативных навыков.
  • Развитие навыков работы в команде (взаимоуважение, взаимопомощь и поддержка).

Здоровьесберегающие:

Выстраивание модели здоровьесберегающего урока.

Форма урока:Исследовательская работа учащихся.

Ход урока

·        Организационный момент.

·        Актуализация  знаний.  Разминка.

·        Выполнение лабораторной работы.

·        Физическая пауза.

·        Исследовательская часть работы.

·        Домашнее задание.

·        Закрепление изученного материала.

1. Организационный момент.Слайды 2-3

2. Актуализация знаний. Разминка.Слайды 4-7

1.     Что такое простые механизмы?

Перечислите, какие простые механизмы Вы знаете

Приведите примеры применения простых механизмов

Для чего они нужны?

Объясните своими словами смысл выражения “получить выигрыш в силе”

Сформулируйте «золотое правило» механики

2.     Рассмотрим ситуацию. Слайды 8 – 9

Рабочему надо загрузить бочку с бензином в кузов грузовой автомашины. Чтобы просто поднять её, надо приложить очень большую силу — силу, равную силе тяжести (весу) бочки. Такую силу рабочий приложить не может

•         Как ему поступить?

(учащиеся предлагают свои варианты)

тогда он кладет две доски на край кузова и вкатывает бочку по образовавшейся наклонной плоскости, прикладывая силу, значительно меньшую , чем вес бочки!

Вывод:Слайд 10 – 11

·        Наклонная плоскость применяется для перемещения тяжелых предметов на более высокий уровень без их непосредственного поднятия

·        К таким устройствам относятся пандусы, эскалаторы, обычные лестницы и конвейеры

3. Какими параметрами характеризуется наклонная плоскость?

3. Лабораторная работа № 10.[1]Слайды 12 — 21

«Определение коэффициента полезного действия при подъеме тела по наклонной плоскости»

Предмет исследования: наклонная плоскость.

Цель исследования:рассчитать КПД при подъеме телапонаклонной плоскости.

Задачи исследования:

         — Рассчитать полезную работу.

         — Рассчитать затраченную работу.

         — Сравнить полезную и затраченную работу.

         — Рассчитать КПД при подъеме телапонаклонной плоскости.

Оборудование:Компьютер, мультимедийный проектор (для учителя)

·        Штатив

·        Доска

·        Брусок

·        Набор грузов

·        Динамометр

·        Мерная лента (линейка)

Изучение нового материала

1.      Познакомить учащихся с новой физической величиной – КПД механизма.

КПД — это физическая величина, равная отношению полезной работы к затраченной, выраженная в процентах

КПД обозначается буквой «эта»

КПД измеряется в процентах

Какая работа является полезной, какая работа является затраченной?

Затраченная работа     Азатраченная=F*s

Полезная работа     Aполезная= P*h

Например, КПД= 75%

Это число показывает, что из 100% (затраченной работы) полезная работа составляет 75%

Инструктаж по выполнению работы

Выполнение лабораторной работы

Определите цену деления приборов (динамометра и линейки)

1.   Установите доску на высоте h, измерьте ее

2.     Измерьте динамометром вес бруска Р

3.     Положите брусок на доску и динамометром тяните его равномерно вверх вдоль наклонной плоскости. Измерьте силу F. Вспомните, как правильно при этом пользоваться динамометром.

4.     Измерьте длину наклонной плоскости s.

5.     Рассчитайте полезную и затраченную работу.

6.     Вычислите коэффициент полезного действия при подъеме тела по наклонной плоскости.

7.     Данные запишите в таблицу № 1.

8.     Сделайте вывод.

Оформление результатов работы

Таблица 1.

Вес телаР, Н Высотаh, м Апол,Дж СилаF, Н Длинаs, м Азатр,Дж КПД, %
Вывод:

•         Полезная работа _______________, чем затраченная.

•         Коэффициент полезного действия при подъеме тела по наклонной плоскости       _____  %, т.е. это число показывает, что __________________________________________________________________.

4.  Физическая пауза.Слайды 22 — 25 

Примеры наклонной плоскости. Учащиеся смотрят слайды с примерами применения наклонной плоскости.

5.  Исследовательская работа. Слайды 26 – 30

•         Проблема. От чего может зависеть КПД наклонной плоскости?

•         Гипотеза. Если увеличить (уменьшить) высоту наклонной плоскости, то КПД при подъеме тела по наклонной плоскости не изменится (увеличится, уменьшится).

•         Если увеличить (уменьшить) вес тела, то КПД при подъеме тела по наклонной плоскости не изменится (увеличится, уменьшится).

Учащиеся выбирают один из предложенных вариантов исследования:

•         Как зависит КПД при подъеме тела по наклонной плоскости от высоты наклонной плоскости?

•          Как зависит КПД при подъеме тела по наклонной плоскостиот веса тела?

Оформление результатов работы

Таблица 2.

Вес телаР, Н Высотаh, м Апол,Дж СилаF, Н Длинаs, м Азатр,Дж КПД, %
Вывод:

Вывод:

КПД при подъеме тела по наклонной плоскости зависит (не зависит) от высоты наклонной плоскости. Чем больше (меньше) высота наклонной плоскости, тем КПД __________.

КПД при подъеме тела по наклонной плоскостизависит (не зависит) от веса тела. Чем больше (меньше) вес тела, тем КПД __________.

Обсуждение вариантов исследования.

6.  Домашнее задание.  Слайды 31 — 32

 Параграф 60, 61, задача 474.

 Для желающих подготовить сообщения.

·        Простые механизмы у меня дома

·        Устройство мясорубки

·        Простые механизмы на даче

·        Простые механизмы в строительстве

·        Простые механизмы и тело человека

7.  Закрепление изученного материала   Слайды  31 – 34
Работа с текстом [2]

При использовании _________________ механизмов человек совершает _______________. Простые механизмы позволяют получить выигрыш ______________ . При этом во сколько раз ________________ в силе, во столько же раз _________________________________. В этом состоит ___________________________________ механики.

Оно формулируется так: __________________________________________________________________________________________________________________________________________________________. Обычно при движении тела ______________________________ трения. Поэтому величина _____________________ работы всегда больше ____________________ .

Отношение ________________________________________ к ______________________, выраженное в процентах, называется  _______________________________________________________________________________________ : ______________.

Мини – тест.

Ваш КПД сегодня на уроке

1.     100%

2.     больше 100%

3.     меньше 100%

4.     0%

Литература

1 А.В.Перышкин Физика 7 класс. М.: Дрофа, 2010

2 Г.Н.Степанова Физика 7 рабочая тетрадь ч.1. СПб СТП-Школа, 2003

Источник: http://ext.spb.ru/2011-03-29-09-03-14/96-2011-12-05-14-05-58/780-2011-10-27-20-01-16.html

Кпд доклад по физике , Коэффициент полезного действия механизма — урок. Физика, 7 класс

Что такое Wiki-учебник? Обрати внимание! Политика конфиденциальности Описание Википедии Отказ от ответственности Свяжитесь с нами Разработчики Заявление о куки Мобильная версия. Примеры расчета КПД Рассмотрим пример. Его автором является древнегреческий ученый Герон Александрийский, живший в I в. Поиск по сайту.

Глава 1. Тепловые явления. Для этого уменьшают трение в осях механизмов и их массу. В тех случаях, когда трение ничтожно мало и используемые механизмы имеют массу, пренебрежимо малую по сравнению с массой поднимаемого груза, коэффициент полезного действия оказывается лишь немного меньше 1.

В этом случае затраченную работу можно считать примерно равной полезной работе: Следует помнить, что выигрыша в работе с помощью простого механизма получить. Поскольку каждую из работ в равенстве Этот закон называют «золотым правилом» механики. Его автором является древнегреческий ученый Герон Александрийский, живший в I.

7 кл — 44. Коэффициент полезного действия механизма

Тем не менее оно бывает очень полезным при анализе работы любого простого механизма. Так, например, благодаря этому правилу мы сразу можем сказать, что рабочему, изображенному на рисунке 47, при двукратном выигрыше в силе для подъема груза на 10 см придется опустить противоположный конец рычага на 20 см.

Наибольшим КПД среди циклических машин, оперирующих при заданных температурах нагревателя T 1 и холодильника T 2обладают тепловые двигатели, работающие по циклу Карно ; этот предельный КПД равен.

Не все показатели, характеризующие эффективность энергетических процессов, соответствуют вышеприведённому описанию. КПД котлов на органическом топливе традиционно рассчитывается по низшей теплоте сгорания ; при этом предполагается, что влага продуктов сгорания покидает котёл в виде перегретого пара.

Обрати внимание! Полезная работа всегда составляет лишь некоторую часть полной работы, которую совершает человек, используя механизм.

В конденсационных котлах эта влага конденсируется, теплота конденсации полезно используется. При расчёте КПД по низшей теплоте сгорания он в итоге может получиться больше единицы. Учебные заведения. Проверочные работы.

Отправить отзыв. Рассмотрим пример. Велосипедист массой 55 кг поднялся на велосипеде массой 5 кг на холм, высота которого 10 м, совершив при этом работу 8 кДж.

§24. КПД теплового двигателя. Задание №doc-4, ГДЗ по физике за 8 класс к учебнику Пёрышкина

Найдите коэффициент полезного действия велосипеда. Трение качения колёс о дорогу не учитывайте.

Коэффициент полезного действия

Найдём общую массу велосипеда и велосипедиста:. Рассмотрим ещё один пример.

К другому плечу прилагают силу F, направленную вниз, и его конец опускается на h. Репетиторы О сайте Цены Библиотека Wiki-учебник. Оставить заявку на подбор репетитора.

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии , проверенной 22 июля ; проверки требует 1 правка. В связи с этим второй вариант записи формулы менее предпочтителен одна и та же физическая величина может быть выражена в различных единицах независимо от формул, где она участвует. Конструируя механизмы, стремятся увеличить их КПД.

Источник: http://veresov-gallery.ru/7536-kpd-doklad-po-fizike.php

Формула КПД (коэффициента полезного действия)

В реальной действительности работа, совершаемая при помощи какого — либо устройства, всегда больше полезной работы, так как часть работы выполняется против сил трения, которые действуют внутри механизма и при перемещении его отдельных частей. Так, применяя подвижный блок, совершают дополнительную работу, поднимая сам блок и веревку и, преодолевая силы трения в блоке.

Введем следующие обозначения: полезную работу обозначим $A_p$, полную работу — $A_{poln}$. При этом имеем:

Определение и формула КПД Определение

Коэффициентом полезного действия (КПД) называют отношение полезной работы к полной. Обозначим КПД буквой $\eta $, тогда:

\[\eta =\frac{A_p}{A_{poln}}\ \left(2\right).\]

Чаще всего коэффициент полезного действия выражают в процентах, тогда его определением является формула:

\[\eta =\frac{A_p}{A_{poln}}\cdot 100\%\ \left(2\right).\]

При создании механизмов пытаются увеличить их КПД, но механизмов с коэффициентом полезного действия равным единице (а тем более больше единицы) не существует.

И так, коэффициент полезного действия — это физическая величина, которая показывает долю, которую полезная работа составляет от всей произведенной работы. При помощи КПД оценивают эффективность устройства (механизма, системы), преобразующей или передающей энергию, совершающего работу.

Для увеличения КПД механизмов можно пытаться уменьшать трение в их осях, их массу. Если трением можно пренебречь, масса механизма существенно меньше, чем масса, например, груза, который поднимает механизм, то КПД получается немного меньше единицы. Тогда произведенная работа примерно равна полезной работе:

\[A_p\approx A_{poln}\left(3\right).\]

Золотое правило механики

Необходимо помнить, что выигрыша в работе, используя простой механизм добиться нельзя.

Выразим каждую из работ в формуле (3) как произведение соответствующей силы на путь, пройденный под воздействием этой силы, тогда формулу (3) преобразуем к виду:

\[F_1s_1\approx F_2s_2\left(4\right).\]

Выражение (4) показывает, что используя простой механизм, мы выигрываем в силе столько же, сколько проигрываем в пути. Данный закон называют «золотым правилом» механики. Это правило сформулировал в древней Греции Герон Александрийский.

Это правило не учитывает работу по преодолению сил трения, поэтому является приближенным.

Кпд при передаче энергии

Коэффициент полезного действия можно определить как отношение полезной работы к затраченной на ее выполнение энергии ($Q$):

\[\eta =\frac{A_p}{Q}\cdot 100\%\ \left(5\right).\]

Для вычисления коэффициента полезного действия теплового двигателя применяют следующую формулу:

\[\eta =\frac{Q_n-Q_{ch}}{Q_n}\left(6\right),\]

где $Q_n$ — количество теплоты, полученное от нагревателя; $Q_{ch}$ — количество теплоты переданное холодильнику.

КПД идеальной тепловой машины, которая работает по циклу Карно равно:

\[\eta =\frac{T_n-T_{ch}}{T_n}\left(7\right),\]

где $T_n$ — температура нагревателя; $T_{ch}$ — температура холодильника.

Примеры задач на коэффициент полезного действия

Пример 1

Задание. Двигатель подъемного крана имеет мощность $N$. За отрезок времени равный $\Delta t$ он поднял груз массой $m$ на высоту $h$. Каким является КПД крана?\textit{}

Решение. Полезная работа в рассматриваемой задаче равна работе по подъему тела на высоту $h$ груза массы $m$, это работа по преодолению силы тяжести. Она равна:

\[A_p=mgh\ \left(1.1\right).\]

Полную работу, которая выполняется при поднятии груза, найдем, используя определение мощности:

\[N=\frac{A_{poln}}{\Delta t}\to A_{poln}=N\Delta t\left(1.2\right).\]

Воспользуемся определением коэффициента полезного действия для его нахождения:

\[\eta =\frac{A_p}{A_{poln}}\cdot 100\%\left(1.3\right).\]

Формулу (1.3) преобразуем, используя выражения (1.1) и (1.2):

\[\eta =\frac{mgh}{N\Delta t}\cdot 100\%.\]

Ответ. $\eta =\frac{mgh}{N\Delta t}\cdot 100\%$

    Пример 2

Задание. Идеальный газ выполняет цикл Карно, при этом КПД цикла равно $\eta $. Какова работа в цикле сжатия газа при постоянной температуре? Работа газа при расширении равна $A_0$

Решение. Коэффициент полезного действия цикла определим как:

\[\eta =\frac{A_p}{Q}\left(2.1\right).\]

Рассмотрим цикл Карно, определим, в каких процессах тепло подводят (это будет $Q$).

Так как цикл Карно состоит из двух изотерм и двух адиабат, можно сразу сказать, что в адиабатных процессах (процессы 2-3 и 4-1) теплообмена нет. В изотермическом процессе 1-2 тепло подводят (рис.1 $Q_1$), в изотермическом процессе 3-4 тепло отводят ($Q_2$). Получается, что в выражении (2.1) $Q=Q_1$. Мы знаем, что количество теплоты (первое начало термодинамики), подводимое системе при изотермическом процессе идет полностью на выполнение газом работы, значит:

\[Q=Q_1=A_{12}\left(2.2\right).\]

Газ совершает полезную работу, которую равна:

\[A_p=Q_1-Q_2\left(2.3\right).\]

Количество теплоты, которое отводят в изотермическом процессе 3-4 равно работе сжатия (работа отрицательна) (так как T=const, то $Q_2=-A_{34}$). В результате имеем:

\[A_p=A_{12}+A_{34}\left(2.4\right).\]

Преобразуем формулу (2.1) учитывая результаты (2.2) — (2.4):

\[\eta =\frac{A_{12}+A_{34}}{A_{12}}\to A_{12}\eta =A_{12}+A_{34}\to A_{34}=(\eta -1)A_{12}\left(2.4\right).\]

Так как по условию $A_{12}=A_0,\ $окончательно получаем:

\[A_{34}=\left(\eta -1\right)A_0.\]

Ответ. $A_{34}=\left(\eta -1\right)A_0$

   

Читать дальше: формула линейной скорости.

Источник: https://www.webmath.ru/poleznoe/fizika/fizika_132_formula_kojefficienta_poleznogo_dejstvija.php

II. Молекулярная физика

Двигатель, в котором происходит превращение внутренней энергии топлива, которое сгорает, в механическую работу.

Любой тепловой двигатель состоит из трех основных частей: нагревателя, рабочего тела (газ, жидкость и др.) и холодильника. В основе работы двигателя лежит циклический процесс (это процесс, в результате которого система возвращается в исходное состояние).

Прямой цикл теплового двигателя

Общее свойство всех циклических (или круговых) процессов состоит в том, что их невозможно провести, приводя рабочее тело в тепловой контакт только с одним тепловым резервуаром. Их нужно, по крайней мере, два. Тепловой резервуар с более высокой температурой называют нагревателем, а с более низкой – холодильником.

Совершая круговой процесс, рабочее тело получает от нагревателя некоторое количество теплоты Q1 (происходит расширение) и отдает холодильнику количество теплоты Q2, когда возвращается в исходное состояние и сжимается.

Полное количество теплоты Q=Q1-Q2, полученное рабочим телом за цикл, равно работе, которую выполняет рабочее тело за один цикл.

Обратный цикл холодильной машины

При обратном цикле расширение происходит при меньшем давлении, а сжатие — при большем. Поэтому работа сжатия больше, чем работа расширения, работу выполняет не рабочее тело, а внешние силы. Эта работа превращается в теплоту. Таким образом, в холодильной машине рабочее тело забирает от холодильника некоторое количество теплоты Q1 и передает нагревателю большее количество теплоты Q2.

Цикл Карно

В тепловых двигателях стремятся достигнуть наиболее полного превращения тепловой энергии в механическую. Максимальное КПД.

На рисунке изображены циклы, используемые в бензиновом карбюраторном двигателе и в дизельном двигателе. В обоих случаях рабочим телом является смесь паров бензина или дизельного топлива с воздухом.

Цикл карбюраторного двигателя внутреннего сгорания состоит из двух изохор (1–2, 3–4) и двух адиабат (2–3, 4–1). Дизельный двигатель внутреннего сгорания работает по циклу, состоящему из двух адиабат (1–2, 3–4), одной изобары (2–3) и одной изохоры (4–1).

Реальный коэффициент полезного действия у карбюраторного двигателя порядка 30%, у дизельного двигателя – порядка 40 %.

Французский физик С.Карно разработал работу идеального теплового двигателя. Рабочую часть двигателя Карно можно представить себе в виде поршня в заполненном газом цилиндре. Поскольку двигатель Карно — машина чисто теоретическая, то есть идеальная, силы трения между поршнем и цилиндром и тепловые потери считаются равными нулю. Механическая работа максимальна, если рабочее тело выполняет цикл, состоящий из двух изотерм и двух адиабат. Этот цикл называют циклом Карно.

участок 1-2: газ получает от нагревателя количество теплоты Q1 и изотермически расширяется при температуре T1
участок 2-3: газ адиабатически расширяется, температура снижается до температуры холодильника T2
участок 3-4: газ экзотермически сжимается, при этом он отдает холодильнику количество теплоты Q2
участок 4-1: газ сжимается адиабатически до тех пор, пока его температура не повысится до T1.
Работа, которую выполняет рабочее тело — площадь полученной фигуры 1234.

Функционирует такой двигатель следующим образом:

1. Сначала цилиндр вступает в контакт с горячим резервуаром, и идеальный газ расширяется при постоянной температуре. На этой фазе газ получает от горячего резервуара некое количество тепла.2. Затем цилиндр окружается идеальной теплоизоляцией, за счет чего количество тепла, имеющееся у газа, сохраняется, и газ продолжает расширяться, пока его температура не упадет до температуры холодного теплового резервуара.3.

На третьей фазе теплоизоляция снимается, и газ в цилиндре, будучи в контакте с холодным резервуаром, сжимается, отдавая при этом часть тепла холодному резервуару.

4. Когда сжатие достигает определенной точки, цилиндр снова окружается теплоизоляцией, и газ сжимается за счет поднятия поршня до тех пор, пока его температура не сравняется с температурой горячего резервуара.

После этого теплоизоляция удаляется и цикл повторяется вновь с первой фазы.

КПД цикла Карно не зависит от вида рабочего тела

для холодильной машины

В реальных тепловых двигателях нельзя создать условия, при которых их рабочий цикл был бы циклом Карно. Так как процессы в них происходят быстрее, чем это необходимо для изотермического процесса, и в то же время не настолько быстрые, чтоб быть адиабатическими.

Источник: http://fizmat.by/kursy/termodinamika/teplovye_dvigateli

Коэффициент полезного действия

Источник: https://remont220.ru/osnovy-elektrotehniki/976-kpd-fizicheskiy-smysl-velichiny-kak-ee-vychislyat/

Формула полезной работы в физике для КПД

Формула полезной работы в физике для КПД

Определение 1

КПД (коэффициент полезного действия) — величина, характеризующая соотношение используемой энергии к затрачиваемой, т.е. энергетическую эффективность системы.

КПД измеряется в процентах или указывается как десятичная дробь от 0 до 1. КПД 50% (или, что тоже самое– 0,5) означает, что только половина энергии используется для выполнения работы. Остальная рассеивается в окружающем пространстве, как правило, в форме тепла.

Замечание 1

Коэффициент полезного действия паровозов, применявшихся для железнодорожных перевозок в XIX — первой половине XX вв., составлял менее 10%, т.е. 90 и более процентов тепла от сжигаемого в топках угля улетучивалось в атмосферу, не выполняя полезной работы по вращению колес, приводящему к движению состав. Для сравнения: КПД пришедших на смену паровозам тепловозов (в них используются не паровые, а дизельные двигатели) достигает 40%.

КПД в формулах обозначают греческой буквой $\eta$ (эта).

$\eta = \frac{A_п}{A_з}$

, где $A_п$ — полезная работа, $A_з$ — затраченная.

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

Полезная работа и потери энергии

Полезная работа и потери энергии

«Полезность» выполняемой работы — величина субъективная, связанная с человеческим восприятием, поэтому о КПД говорят чаще всего применительно к искусственно созданным системам. Несмотря на то, что технологии совершенствуются, избежать потерь в рукотворных системах инженерам не удастся:

  • в механических устройствах часть затрачиваемой энергии всегда тратится на преодоление сил трения между соприкасающимися деталями (эти силы уменьшают за счет более тщательной обработки и смазки);
  • в электрических системах часть энергии рассеивается в виде тепла при преодолении сопротивления проводников (явление сверхпроводимости еще не применимо к практике и требует низких температур);
  • в нагревательных приборах утечки происходят в силу дефектов теплоизоляции и т.п.

Таким образом,

$A_з$ > $A_п$

, где $A_з$ — работа затраченная, $A_п$ — работа полезная.

Потери энергии можно сводить к минимуму, но полностью исключить их невозможно. Какое бы совершенное устройство мы не придумали, КПД никогда не достигнет единицы в силу второго закона термодинамики, действие которого исключает создание механизмов с КПД равным или большим 100%.

КПД различных физических процессов

КПД различных физических процессов

Методики подсчета КПД разнятся в зависимости от физической природы явлений, задействованных в преобразующих энергию системах.

При практических расчетах, связанных с движением, знаменатель формулы КПД удобнее представить не как работу (произведение силы на расстояние), а как затраченную энергию, выделившуюся, например, при сжигании топлива:

$\eta = \frac{A_п}{Q}$

, где $A_п$ — выполненная системой полезная работа, $Q$ — затраченная системой энергия.

Например, зная сколько бензина истрачено двигателем автомобиля (количество выделившегося в результате тепла можно легко подсчитать), а также массу, скорость и пройденное расстояние, легко найти КПД.

Если речь идет не об автомобиле с двигателем внутреннего сгорания, а об электромобиле, то затраты энергии в знаменателе можно подсчитать как произведение средних тока и напряжения за время движения рассматриваемого транспортного средства.

Поскольку мощность представляет собой работу, выполняемую в единицу времени, КПД иногда бывает удобно посчитать как соотношение входной и выходной мощностей системы:

$\eta = \frac{P_{out}}{P_{in}}$

, где $P_{in}$ — мощность на входе системы, $P_{out}$ — на выходе.

Такой подход удобен, например, при расчете КПД солнечных батарей. В знаменателе в этом случае будет мощность светового излучения, падающего на их поверхность, в числителе — мощность генерируемого тока.

Пример 1

Лебедка, потребляющая мощностью 500 Вт, за время 10 с подняла груз массой 70 кг на высоту 5м. Найти КПД лебедки.

Лебедка преодолела силу тяжести, совершив работу

$A_л = m \cdot g \cdot h$

, где $m$ — масса, $g$ — ускорение свободного падения, $h$ высота.

Подставив значения, получаем:

$A = 70 \cdot 9,8 \cdot 5 = 3430 Дж$

Затраченную энергию найдем через мощность и время:

$Q = P \cdot t$

, где $Q$ — энергия, $P$ — мощность, $t$ — время.

Подставив значения, получаем:

$Q = 500 Вт \cdot 10 с = 5000 Дж$

КПД находим как соотношение

$\eta = \frac{A}{Q} = \frac{3430}{5000}\cdot 100$% = $68,6$%

Ответ: КПД лебедки равен 68,6%.

Источник: https://spravochnick.ru/fizika/formula_poleznoy_raboty_v_fizike_dlya_kpd/

Тепловые машины

Тепловые машины

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: принципы действия тепловых машин, КПД тепловой машины, тепловые двигатели и охрана окружающей среды

Темы кодификатора ЕГЭ: принципы действия тепловых машин, КПД тепловой машины, тепловые двигатели и охрана окружающей среды

Коротко говоря, тепловые машины преобразуют теплоту в работу или, наоборот, работу в теплоту.
Тепловые машины бывают двух видов — в зависимости от направления протекающих в них процессов.

1. Тепловые двигатели преобразуют теплоту, поступающую от внешнего источника, в механическую работу.

2. Холодильные машины передают тепло от менее нагретого тела к более нагретому за счёт механической работы внешнего источника.

Рассмотрим эти виды тепловых машин более подробно.

Тепловые двигатели

Тепловые двигатели

Мы знаем, что совершение над телом работы есть один из способов изменения его внутренней энергии: совершённая работа как бы растворяется в теле, переходя в энергию беспорядочного движения и взаимодействия его частиц.

Рис. 1. Тепловой двигатель

Тепловой двигатель — это устройство, которое, наоборот, извлекает полезную работу из «хаотической» внутренней энергии тела. Изобретение теплового двигателя радикально изменило облик человеческой цивилизации.

Принципиальную схему теплового двигателя можно изобразить следующим образом (рис. 1). Давайте разбираться, что означают элементы данной схемы.

Рабочее тело двигателя — это газ. Он расширяется, двигает поршень и совершает тем самым полезную механическую работу.

Но чтобы заставить газ расширяться, преодолевая внешние силы, нужно нагреть его до температуры, которая существенно выше температуры окружающей среды. Для этого газ приводится в контакт с нагревателем — сгорающим топливом.

В процессе сгорания топлива выделяется значительная энергия, часть которой идёт на нагревание газа. Газ получает от нагревателя количество теплоты . Именно за счёт этого тепла двигатель совершает полезную работу .

Это всё понятно. Что такое холодильник и зачем он нужен?

При однократном расширении газа мы можем использовать поступающее тепло максимально эффективно и целиком превратить его в работу. Для этого надо расширять газ изотермически: первый закон термодинамики, как мы знаем, даёт нам в этом случае .

Но однократное расширение никому не нужно. Двигатель должен работать циклически, обеспечивая периодическую повторяемость движений поршня. Следовательно, по окончании расширения газ нужно сжимать, возвращая его в исходное состояние.

В процессе расширения газ совершает некоторую положительную работу . В процессе сжатия над газом совершается положительная работа (а сам газ совершает отрицательную работу ). В итоге полезная работа газа за цикл: .

Разумеется, должно быть , или (иначе никакого смысла в двигателе нет).

Сжимая газ, мы должны совершить меньшую работу, чем совершил газ при расширении.

Как этого достичь? Ответ: сжимать газ под меньшими давлениями, чем были в ходе расширения. Иными словами, на -диаграмме процесс сжатия должен идти ниже процесса расширения, т. е. цикл должен проходиться по часовой стрелке (рис. 2).

Рис. 2. Цикл теплового двигателя

Например, в цикле на рисунке работа газа при расширении равна площади криволинейной трапеции . Аналогично, работа газа при сжатии равна площади криволинейной трапеции со знаком минус. В результате работа газа за цикл оказывается положительной и равной площади цикла .

Хорошо, но как заставить газ возвращаться в исходное состояние по более низкой кривой, т. е. через состояния с меньшими давлениями? Вспомним, что при данном объёме давление газа тем меньше, чем ниже температура. Стало быть, при сжатии газ должен проходить состояния с меньшими температурами.

Вот именно для этого и нужен холодильник: чтобы охлаждать газ в процессе сжатия.

Холодильником может служить атмосфера (для двигателей внутреннего сгорания) или охлаждающая проточная вода (для паровых турбин). При охлаждении газ отдаёт холодильнику некоторое количество теплоты .

Суммарное количество теплоты, полученное газом за цикл, оказывается равным . Согласно первому закону термодинамики:

где — изменение внутренней энергии газа за цикл. Оно равно нулю: , так как газ вернулся в исходное состояние (а внутренняя энергия, как мы помним, является функцией состояния). В итоге работа газа за цикл получается равна:

(1)

Как видите, : не удаётся полностью превратить в работу поступающее от нагревателя тепло. Часть теплоты приходится отдавать холодильнику — для обеспечения цикличности процесса.

Показателем эффективности превращения энергии сгорающего топлива в механическую работу служит коэффициент полезного действия теплового двигателя.

КПД теплового двигателя — это отношение механической работы к количеству теплоты , поступившему от нагревателя:

С учётом соотношения (1) имеем также

(2)

КПД теплового двигателя, как видим, всегда меньше единицы. Например, КПД паровых турбин приблизительно , а КПД двигателей внутреннего сгорания около .

Холодильные машины

Холодильные машины

Житейский опыт и физические эксперименты говорят нам о том, что в процессе теплообмена теплота передаётся от более нагретого тела к менее нагретому, но не наоборот. Никогда не наблюдаются процессы, в которых за счёт теплообмена энергия самопроизвольно переходит от холодного тела к горячему, в результате чего холодное тело ещё больше остывало бы, а горячее тело — ещё больше нагревалось.

Рис. 3. Холодильная машина

Ключевое слово здесь — «самопроизвольно». Если использовать внешний источник энергии, то осуществить процесс передачи тепла от холодного тела к горячему оказывается вполне возможным. Это и делают холодильные
машины.

По сравнению с тепловым двигателем процессы в холодильной машине имеют противоположное направление (рис. 3).

Рабочее тело холодильной машины называют также хладагентом. Мы для простоты будем считать его газом, который поглощает теплоту при расширении и отдаёт при сжатии (в реальных холодильных установках хладагент — это летучий раствор с низкой температурой кипения, который забирает теплоту в процессе испарения и отдаёт при конденсации).

Холодильник в холодильной машине — это тело, от которого отводится теплота. Холодильник передаёт рабочему телу (газу) количество теплоты , в результате чего газ расширяется.

В ходе сжатия газ отдаёт теплоту более нагретому телу — нагревателю. Чтобы такая теплопередача осуществлялась, надо сжимать газ при более высоких температурах, чем были при расширении.

Это возможно лишь за счёт работы , совершаемой внешним источником (например, электродвигателем (в реальных холодильных агрегатах электродвигатель создаёт в испарителе низкое давление, в результате чего хладагент вскипает и забирает тепло; наоборот, в конденсаторе электродвигатель создаёт высокое давление, под которым хладагент конденсируется и отдаёт тепло)). Поэтому количество теплоты, передаваемое нагревателю, оказывается больше количества теплоты, забираемого от холодильника, как раз на величину :

Таким образом, на -диаграмме рабочий цикл холодильной машины идёт против часовой стрелки. Площадь цикла — это работа , совершаемая внешним источником (рис. 4).

Рис. 4. Цикл холодильной машины

Основное назначение холодильной машины — охлаждение некоторого резервуара (например, морозильной камеры). В таком случае данный резервуар играет роль холодильника, а нагревателем служит окружающая среда — в неё рассеивается отводимое от резервуара тепло.

Показателем эффективности работы холодильной машины является холодильный коэффициент, равный отношению отведённого от холодильника тепла к работе внешнего источника:

Холодильный коэффициент может быть и больше единицы. В реальных холодильниках он принимает значения приблизительно от 1 до 3.

Имеется ещё одно интересное применение: холодильная машина может работать как тепловой насос. Тогда её назначение — нагревание некоторого резервуара (например, обогрев помещения) за счёт тепла, отводимого от окружающей среды. В данном случае этот резервуар будет нагревателем, а окружающая среда — холодильником.

Показателем эффективности работы теплового насоса служит отопительный коэффициент, равный отношению количества теплоты, переданного обогреваемому резервуару, к работе внешнего источника:

Значения отопительного коэффициента реальных тепловых насосов находятся обычно в диапазоне от 3 до 5.

Тепловая машина Карно

Тепловая машина Карно

Важными характеристиками тепловой машины являются наибольшее и наименьшее значения температуры рабочего тела в ходе цикла. Эти значения называются соответственно температурой нагревателя и температурой холодильника.

Мы видели, что КПД теплового двигателя строго меньше единицы. Возникает естественный вопрос: каков наибольший возможный КПД теплового двигателя с фиксированными значениями температуры нагревателя и температуры холодильника ?

Пусть, например, максимальная температура рабочего тела двигателя равна , а минимальная — . Каков теоретический предел КПД такого двигателя?

Ответ на поставленный вопрос дал французский физик и инженер Сади Карно в 1824 году.

Он придумал и исследовал замечательную тепловую машину с идеальным газом в качестве рабочего тела. Эта машина работает по циклу Карно, состоящему из двух изотерм и двух адиабат.

Рассмотрим прямой цикл машины Карно, идущий по часовой стрелке (рис. 5). В этом случае машина функционирует как тепловой двигатель.

Рис. 5. Цикл Карно

Изотерма . На участке газ приводится в тепловой контакт с нагревателем температуры и расширяется изотермически. От нагревателя поступает количество теплоты и целиком превращается в работу на этом участке: .

Адиабата . В целях последующего сжатия нужно перевести газ в зону более низких температур. Для этого газ теплоизолируется, а затем расширяется адиабатно на учатке .

При расширении газ совершает положительную работу , и за счёт этого уменьшается его внутренняя энергия: .

Изотерма . Теплоизоляция снимается, газ приводится в тепловой контакт с холодильником температуры . Происходит изотермическое сжатие. Газ отдаёт холодильнику количество теплоты и совершает отрицательную работу .

Адиабата . Этот участок необходим для возврата газа в исходное состояние. В ходе адиабатного сжатия газ совершает отрицательную работу , а изменение внутренней энергии положительно: . Газ нагревается до исходной температуры .

Карно нашёл КПД этого цикла (вычисления, к сожалению, выходят за рамки школьной программы):

(3)

Кроме того, он доказал, что КПД цикла Карно является максимально возможным для всех тепловых двигателей с температурой нагревателя и температурой холодильника .

Так, в приведённом выше примере имеем:

В чём смысл использования именно изотерм и адиабат, а не каких-то других процессов?

Оказывается, изотермические и адиабатные процессы делают машину Карно обратимой. Её можно запустить по обратному циклу (против часовой стрелки) между теми же нагревателем и холодильником, не привлекая другие устройства. В таком случае машина Карно будет функционировать как холодильная машина.

Возможность запуска машины Карно в обоих направлениях играет очень большую роль в термодинамике. Например, данный факт служит звеном доказательства максимальности КПД цикла Карно. Мы ещё вернёмся к этому в следующей статье, посвящённой второму закону термодинамики.

Тепловые двигатели и охрана окружающей среды

Понравилась статья? Поделиться с друзьями:
220 вольт
Для любых предложений по сайту: [email protected]