Что такое реактивное сопротивление

Активное и реактивное сопротивление

В электротехнике понятие сопротивления представляет собой величину, за счет которой определенная часть цепи может противодействовать электрическому току. Она образуется за счет изменения и перехода электроэнергии в другое энергетическое состояние.

Данное явление присуще только переменному току, когда в сети образуется активное и реактивное сопротивление, выражающееся в необратимом изменении энергии или передаче этой энергии между отдельными компонентами электрической цепи.

В случае необратимых изменений электроэнергии сопротивление будет считаться активным, а при наличии обменных процессов – реактивным.

Основные различия между активным и реактивным сопротивлением

Когда электрический ток проходит через элементы с активным сопротивлением, происходят необратимые потери выделяемой мощности. Типичным примером служит электрическая плита, где в процессе работы происходят необратимые превращения электричества в тепловую энергию. То же самое происходит с резистором, в котором тепло выделяется, но обратно в электроэнергию не превращается.

Помимо резисторов, свойствами активного сопротивления обладают приборы освещения, электродвигатели, трансформаторные обмотки, провода и кабели и т.д.

Характерной особенностью элементов с активным сопротивлением являются напряжение и ток, совпадающие по фазе.

Рассчитать этот параметр можно по формуле: r = U/I. На показатели активного сопротивления оказывают влияние физические свойства проводника – сечение, длина, материал, температура.

Эти качества позволяют различать реактивное и активное сопротивление и применять их на практике.

Реактивное сопротивление возникает в тех случаях, когда переменный ток проходит через так называемые реактивные элементы, обладающие индуктивностью и емкостью. Первое свойство характерно для катушки индуктивности без учета активного сопротивления ее обмотки. В данном случае причиной появления реактивного сопротивления считается ЭДС самоиндукции. В зависимости от частоты тока, при ее возрастании, наблюдается и одновременный рост сопротивления, что отражается в формуле xl = wL.

Применение электрического тока в металлах

Реактивное сопротивление конденсатора зависит от емкости. Оно будет уменьшаться при увеличении частоты тока, поэтому данное свойство широко используется в электронике для выполнения регулировочных функций. В этом случае для расчетов используется формула xc = 1/wC.

В электронике существует не только активное и реактивное, но и полное сопротивление цепи, представляющее собой сумму квадратов обоих сопротивлений. Этот параметр обозначается символом Z и отображается в виде формулы:

В графике это выражение выглядит в виде треугольника сопротивлений, где реактивное и активное сопротивление соответствуют катетам, а полное сопротивление или импеданс – гипотенузе.

Индуктивное сопротивление

Реактивное сопротивление подразделяется на два основных вида – индуктивное и емкостное.

При рассмотрении первого варианта следует отметить возникновение в индуктивной обмотке магнитного поля под действием переменного тока. В результате, в ней образуется ЭДС самоиндукции, направленной против движения тока при его росте, и по ходу движения при его уменьшении. Таким образом, при всех изменениях тока и наличии взаимосвязей, ЭДС оказывает на него противоположное действие и приводит к созданию индуктивного сопротивления катушки.

Под влиянием ЭДС самоиндукции энергия магнитного поля обмотки возвращается в электрическую цепь. То есть, между источником питания и обмоткой происходит своеобразный обмен энергией. Это дает основание полагать, что катушка индуктивности обладает реактивным сопротивлением.

В качестве типичного примера можно рассмотреть действие реактивного сопротивления в трансформаторе. Данное устройство имеет общий магнитопровод, с расположенными на нем двумя обмотками или более, имеющими общую зависимость. На одну из них поступает электроэнергия из внешнего источника, а из другой выходит уже трансформированный ток.

Под действием первичного тока, проходящего по катушке, в магнитопроводе и вокруг него происходит наведение магнитного потока. В результате пересечения витков вторичной обмотки, в ней формируется вторичный ток.

При невозможности создания идеальной конструкции трансформатора, магнитный поток будет частично уходить в окружающую среду, что приведет к возникновению потерь.

От них зависит величина реактивного сопротивления рассеяния, которая совместно с активной составляющей образуют комплексное сопротивление, называемое электрическим импедансом трансформатора.

Емкостное сопротивление

В цепи, содержащей емкость и источник переменного тока происходят изменения заряда. Такой емкостью обладают конденсаторы, обладающие максимальной энергией при полном заряде. Напряжение емкости создает сопротивление, противодействующее течению переменного тока, которое считается реактивным. В результате взаимодействия, конденсатор и источник тока постоянно обмениваются энергией.

В конструкцию конденсатора входят токопроводящие пластины в количестве двух и более штук, разделенных слоями диэлектрика. Такое разделение не позволяет постоянному току проходить через конденсатор. Переменный ток может проходить через емкостное устройство, отклоняясь при этом от своей первоначальной величины.

Изменения переменного тока происходят под влиянием емкостного сопротивления. Чтобы лучше понять схему работы, найдем и рассмотрим принцип действия данного явления. Переменное напряжение, приложенное к конденсатору, изменяется в форме синусоиды.

Под его воздействием на обкладках наблюдается всплеск, одновременно здесь накапливаются заряды электроэнергии с противоположными знаками. Их общее количество ограничено емкостью устройства и его габаритами.

Чем выше емкость устройства, тем больше времени требуется на зарядку.

В момент изменения полупериода колебания, напряжение на обкладках конденсатора меняет свою полярность на противоположное значение, потенциалы также изменяются, а заряды пластин перезаряжаются. За счет этого удается создать течение первичного тока и находить способ противодействовать его прохождению, при уменьшении величины и сдвиге угла. Зарядка обкладок позволяет току, проходящему через конденсатор, опережать напряжение на 90.

Компенсация реактивной мощности

С помощью электрических сетей осуществляется передача электроэнергии на значительные расстояния. В большинстве случаев она используется для питания электродвигателей, имеющих высокое индуктивное сопротивление и большое количество резистивных элементов. К потребителям поступает полная мощность, которая делится на активную и реактивную. В первом случае с помощью активной мощности совершается полезная работа, а во втором – происходит нагрев трансформаторных обмоток и электродвигателей.

Что представляет собой электрический ток в вакууме

Под действием реактивной составляющей, возникающей на индуктивных сопротивлениях, существенно понижается качество электроэнергии. Противостоять ее вредному воздействию помогает комплекс мероприятий по компенсации с использованием конденсаторных батарей. За счет емкостного сопротивления удается понизить косинус угла φ.

Компенсирующие устройства применяются на подстанциях, от которых электричество поступает к проблемным потребителям. Этот способ дает положительные результаты не только в промышленности, но и на бытовых объектах, снижая нагрузку на оборудование.

Источник: https://electric-220.ru/news/aktivnoe_i_reaktivnoe_soprotivlenie/2017-12-23-1414

Активное и реактивное сопротивление. Треугольник сопротивлений

Активное и реактивное сопротивление — сопротивлением в электротехнике называется величина, которая характеризует противодействие части цепи электрическому току. Это сопротивление образовано путем изменения электрической энергии в другие типы энергии. В сетях переменного тока имеется необратимое изменение энергии и передача энергии между участниками электрической цепи.

При необратимом изменении электроэнергии компонента цепи в другие типы энергии, сопротивление элемента является активным. При осуществлении обменного процесса электроэнергией между компонентом цепи и источником, то сопротивление реактивное.

В электрической плите электроэнергия необратимо преобразуется в тепло, вследствие этого электроплита имеет активное сопротивление, так же как и элементы, преобразующие электричество в свет, механическое движение и т.д.

В индуктивной обмотке переменный ток образует магнитное поле. Под воздействием переменного тока в обмотке образуется ЭДС самоиндукции, которая направлена навстречу току при его увеличении, и по ходу тока при его уменьшении. Поэтому, ЭДС оказывает противоположное действие изменению тока, создавая индуктивное сопротивление катушки.

С помощью ЭДС самоиндукции осуществляется возвращение энергии магнитного поля обмотки в электрическую цепь. В итоге обмотка индуктивности и источник питания производят обмен энергией. Это можно сравнить с маятником, который при колебаниях преобразует потенциальную и кинетическую энергию. Отсюда следует, что сопротивление индуктивной катушки имеет реактивное сопротивление.

Самоиндукция не образуется в цепи постоянного тока, и индуктивное сопротивление отсутствует. В цепи емкости и источника переменного тока изменяется заряд, значит между емкостью и источником тока протекает переменный ток. При полном заряде конденсатора его энергия наибольшая.

В цепи напряжение емкости создает противодействие течению тока своим сопротивлением, и называется реактивным. Между конденсатором и источником происходит обмен энергией.

После полной зарядки емкости постоянным током напряжение его поля выравнивает напряжение источника, поэтому ток равен нулю.

Конденсатор и катушка в цепи переменного тока работают некоторое время в качестве потребителя энергии, когда накапливают заряд. И также работают в качестве генератора при возвращении энергии обратно в цепь.

Если сказать простыми словами, то активное и реактивное сопротивление – это противодействие току снижения напряжения на элементе схемы. Величина снижения напряжения на активном сопротивлении имеет всегда встречное направление, а на реактивной составляющей – попутно току или навстречу, создавая сопротивление изменению тока

Настоящие элементы цепи на практике имеют все три вида сопротивления сразу. Но иногда можно пренебречь некоторыми из них ввиду незначительных величин. Например, емкость имеет только емкостное сопротивление (при пренебрежении потерь энергии), лампы освещения имеют только активное (омическое) сопротивление, а обмотки трансформатора и электромотора – индуктивное и активное.

Активное сопротивление

В цепи действия напряжения и тока, создает противодействие, снижения напряжения на активном сопротивлении. Падение напряжения, созданное током и оказывающее противодействие ему, равно активному сопротивлению.

При протекании тока по компонентам с активным сопротивлением, снижение мощности становится необратимым. Можно рассмотреть резистор, на котором выделяется тепло. Выделенное тепло не превращается обратно в электроэнергию. Активное сопротивление, также может иметь линия передачи электроэнергии, соединительные кабели, проводники, катушки трансформаторов, обмотки электромотора и т.д.

Отличительным признаком элементов цепи, которые обладают только активной составляющей сопротивления, является совпадение напряжения и тока по фазе. Это сопротивление вычисляется по формуле:

R = U/I, где R – сопротивление элемента, U – напряжение на нем, I – сила тока, протекающего через элемент цепи.

На активное сопротивление влияют свойства и параметры проводника: температура, поперечное сечение, материал, длина.

Реактивное сопротивление

Тип сопротивления, определяющий соотношение напряжения и тока на емкостной и индуктивной нагрузке, не обусловленное количеством израсходованной электроэнергии, называется реактивным сопротивлением.

Оно имеет место только при переменном токе, и может иметь отрицательное и положительное значение, в зависимости от направления сдвига фаз тока и напряжения.

При отставании тока от напряжения величина реактивной составляющей сопротивления имеет положительное значение, а если отстает напряжение от тока, то реактивное сопротивление имеет знак минус.

Активное и реактивное сопротивление, свойства и разновидности

Рассмотрим два вида этого сопротивления: емкостное и индуктивное. Для трансформаторов, соленоидов, обмоток генераторов и моторов характерно индуктивное сопротивление. Емкостный вид сопротивления имеют конденсаторы. Чтобы определить соотношение напряжения и тока, нужно знать значение обоих видов сопротивления, которое оказывает проводник.

Реактивное сопротивление образуется при помощи снижения реактивной мощности, затраченной на образование магнитного поля в цепи. Снижение реактивной мощности создается путем подключения к трансформатору прибора с активным сопротивлением.

Конденсатор, подключенный в цепь, успевает накопить только ограниченную часть заряда перед изменением полярности напряжения на противоположный. Поэтому ток не снижается до нуля, так как при постоянном токе. Чем ниже частота тока, тем меньше заряда накопит конденсатор, и будет меньше создавать противодействие току, что образует реактивное сопротивление.

Иногда цепь имеет реактивные компоненты, но в результате реактивная составляющая равна нулю. Это подразумевает равенство фазного напряжения и тока. В случае отличия от нуля реактивного сопротивления, между током и напряжением образуется разность фаз.

Катушка имеет индуктивное сопротивлением в схеме цепи переменного тока. В идеальном виде ее активное сопротивление не учитывают. Индуктивное сопротивление образуется с помощью ЭДС самоиндукции. При повышении частоты тока возрастает и индуктивное сопротивление.

На индуктивное сопротивление катушки оказывает влияние индуктивность обмотки и частота в сети.

Конденсатор образует реактивное сопротивление из-за наличия емкости. При возрастании частоты в сети его емкостное противодействие (сопротивление) снижается. Это дает возможность активно его применять в электронной промышленности в виде шунта с изменяемой величиной.

Треугольник сопротивлений

Схема цепи, подключенной к переменному току, имеет полное сопротивление, которое можно определить в виде суммы квадратов реактивного и активного сопротивлений.

Если изобразить это выражение в виде графика, то получится треугольник сопротивлений. Он образуется, если рассчитать последовательную цепь всех трех видов сопротивлений.

По этому треугольному графику можно увидеть, что катеты представляют собой активное и реактивное сопротивление, а гипотенуза является полным сопротивлением.

Похожие темы:

Источник: https://electrosam.ru/glavnaja/jelektrotehnika/aktivnoe-i-reaktivnoe-soprotivlenie/

Реактивное сопротивление трансформатора: формулы расчета

Мы привыкли считать, что все магнитные потоки в трансформаторе пронизывают обе обмотки и магнитопровод. Если бы существовал идеальный трансформатор, то это действительно так бы и происходило. К сожалению, в реальности часть магнитного потока преодолевает изоляционное пространство, выходит за пределы обмоток и замыкается в них (см. рис. 1). В результате возникает реактивное сопротивление трансформатора. Такое явление ещё называют рассеиванием магнитных потоков.

Рис. 1. Схема, иллюстрирующая рассеивание магнитных потоков

В катушках существуют и другие сопротивления, являющиеся причинами потерь мощности. Таковыми являются: внутреннее сопротивление материалов обмоток, и рассеивания, вызванные индуктивными сопротивлениями. Совокупность рассеиваний магнитных потоков называют внутренним сопротивлением или импедансом трансформатора.

Потери реактивных мощностей

Вспомним, как работает идеальный двухобмоточный трансформатор (см. рис. 2). Когда первичная обмотка окажется под переменным напряжением (например, от электрической сети), возникнет магнитный поток, который пронизывает вторичную катушку индуктивности. Под действием магнитных полей происходит возбуждение вторичных обмоток, в витках которых возникает ЭДС. При подключении активной мощности к прибору во вторичной цепи начинает протекать переменный ток с частотой входного тока.

Рис. 2. Устройство трансформатора

В идеальном трансформаторе образуется прямо пропорциональная связь между напряжениями в обмотках. Их соотношение определяется соотношением числа витков каждой из катушек. Если U1 и U2 – напряжения в первой и второй обмотке соответственно, а w1 и w2 – количество витков обмоток, то справедлива формула: U1 / U2 = w1 / w2.

ЭТО ИНТЕРЕСНО:  Что такое эдс самоиндукции

Другими словами: напряжение в рабочей обмотке во столько раз больше (меньше), во сколько раз количество мотков второй катушки увеличено (уменьшено) по отношению к числу витков, образующих первичную обмотку.

Величину w1 / w2 = k принято называть коэффициентом трансформации. Заметим, что формула, приведённая выше, применима также для автотрансформаторов.

В реальном трансформаторе часть энергии теряется из-за рассеяния магнитных потоков (см. рис. 1). Зоны, где происходит концентрация потоков рассеяния обозначены пунктирными линиями. На рисунке видно, что индуктивность рассеяния охватывает  магнитопровод и выходит за пределы обмоток.

Наличие реактивных сопротивлений в совокупности с активным сопротивлением обмоток приводят к нагреванию конструкции. То есть, при расчётах КПД необходимо учитывать импеданс трансформатора.

Обозначим активное сопротивление обмоток символами R1 и R2 соответственно, а реактивное – буквами X1 и X2. Тогда импеданс первичной обмотки можно записать в виде: Z1= R1+jX1. Для рабочей катушки соответственно будем иметь: Z2= R2+jX2, где j – коэффициент, зависящий от типа сердечника.

Реактивное сопротивление можно представить в виде разницы индукционного и ёмкостного показателя: X = RL – RC. Учитывая, что RL =  ωL, а RC = 1/ωC, где ω – частота тока, получаем формулу для вычисления реактивного сопротивления: X = ωL – 1/ωC.

Не прибегая к цепочке преобразований, приведём готовую формулу для расчёта полного сопротивления, то есть, для определения импеданса трансформатора:

Суммарное сопротивление трансформатора необходимо знать для определения его КПД. Величины потерь в основном зависят от материала обмоток и конструктивных особенностей трансформаторного железа.

Вихревые потоки в монолитных стальных сердечниках значительно больше, чем многосекционных конструкциях магнитопроводов. Поэтому на практике сердечники изготавливаются из тонких пластин трансформаторной стали.

С целью повышения удельного сопротивления материала, в железо добавляют кремний, а сами пластины покрывают изоляционным лаком.

Для определения параметров трансформаторов важно найти активное и реактивное сопротивление, провести расчёты потерь холостого хода. Приведённая выше формула не практична для вычисления импеданса по причине сложности измерений величин индукционного и ёмкостного сопротивлений. Поэтому на практике пользуются другими методами для расчёта, основанными на особенностях режимов работы силовых трансформаторов.

Режимы работы

Двухобмоточный трансформатор способен работать в одном из трёх режимов:

  • вхолостую;
  • в режиме нагрузки;
  • в состоянии короткого замыкания.

Для проведения расчётов режимов электрических цепей проводимости заменяют нагрузкой, величина которой равна потерям при работе в режиме холостого хода. Вычисления параметров схемы замещения проводят опытным путём, переводя трансформатор в один из возможных режимов: холостого хода, либо в состояние короткого замыкания. Таким способом можно определить:

  • уровень потерь активной мощности при работе на холостом ходу;
  • величины потерь активной мощности в короткозамкнутом приборе;
  • напряжение короткого замыкания;
  • силу тока холостого хода;
  • активное и реактивное сопротивление в короткозамкнутом трансформаторе.

Параметры режима холостого хода

Для перехода в работу на холостом ходу необходимо убрать отсутствует нагрузку на вторичной обмотке, то есть – разомкнуть электрическую цепь. В разомкнутой катушке напряжение отсутствует. Главной составляющей тока в первичной цепи является ток, возникающий на реактивных сопротивлениях. С помощью измерительных приборов довольно просто найти основные параметры переменного тока намагничивания, используя которые можно вычислить потери мощности, умножив силу тока на подаваемое напряжение.

Схема измерений на холостом ходу показана на рисунке 3. На схеме показаны точки для подключения измерительных приборов.

Рис. 3. Схема режима холостого хода

Формула, применяемая для  расчётов параметров реактивной проводимости, выглядит так: Вт = Iх%*Sном  / 100* Uв ном2  Умножитель 100 в знаменателе применён потому, что величина тока холостого хода Iх обычно выражается в процентах.

Режим короткого замыкания

Для перевода трансформатора на работу в режиме короткого замыкания закорачивают обмотку низшего напряжения. На вторую катушку подают такое напряжение, при котором в каждой обмотке циркулирует номинальный ток. Поскольку подаваемое напряжение существенно ниже номинальных напряжений, то потери активной мощности в проводимости настолько малы, что ими можно пренебречь.

Таким образом, у нас остаются активные мощности в трансформаторе, которые расходуются на нагрев обмоток: ΔPk = 3* I1ном * Rт. Выразив ток I1 ном через напряжение Uка и сопротивление Rт, умножив выражение на 100, получим формулу для вычисления падения напряжения в зонах активного сопротивления (в процентах):

Активное сопротивление двухобмоточного силового трансформатора вычисляем по формуле:

Подставив значение Rт в предыдущую формулу, получим:

Вывод: в короткозамкнутом трансформаторе падение напряжения в зоне активного сопротивления (выраженная в %) прямо пропорционально размеру потерь активной мощности.

Формула для вычисления падения напряжения в зонах реактивных сопротивлений имеет вид:

Отсюда находим:

Величины реактивных сопротивлений в современных трансформаторах гораздо меньше активного. Поэтому можно считать что падение напряжения в зоне реактивного сопротивления Uк р ≈ Uк, поэтому для практических расчётов можно пользоваться формулой: XT = Uk*Uв ном2 / 100*Sном

Рассуждения, приведённые выше, справедливы также для многообмоточных, в том числе и для трёхфазных трансформаторов. Однако вычисления проводятся по каждой обмотке в отдельности, а задача сводится к решению систем уравнений.

Знание коэффициентов мощности, сопротивления рассеивания и других параметров магнитных цепей позволяет делать расчёты для определения величин номинальных нагрузок. Это, в свою очередь, обеспечивает работу трансформатора в промежутке номинальных мощностей.

Источник: https://www.asutpp.ru/reaktivnoe-soprotivlenie-ili-impedans-transformatora.html

Реактивное сопротивление конденсатора: расчет катушки индуктивности

Сопротивление, создающее препятствие продвижению электрического тока вдоль замкнутой цепи под воздействием катушки индуктивности или конденсатора, называется реактивным.

Что такое реактивное сопротивление

Согласно известному закону Ома, достаточно приложить к концам электрической цепи различные напряжения, и под таким воздействием по проводникам будет протекать ток, сила которого будет зависеть от сопротивления сердечника.

Катушка

От источников напряжения переменный ток поступает к собранной схеме, повторяя очертания синусоиды. Когда цепь не работает на изменение направления потока электронов, и вектор, согласно фазе, соответствует приложенному напряжению, то на данном участке резистором создается активное чистое сопротивление. Если же отмечаются отличительные черты во вращении векторов, то такое сопротивление именуется реактивным.

Реактивное сопротивление у катушки индуктивности может возникнуть, если присоединить источник переменного напряжения и участок изолированной проволоки. Последняя подключается к генератору и на концы магнитопровода, используемого для улучшения поступления магнитных потоков. При замерах тока в обоих случаях отмечается, что его величина значительно снижена, а по фазе имеется отставание на заданный угол.

Генератор

Важно! Это явление отмечается при возникновении противодействующих индукционных сил, которые проявляются под воздействием закона Ленца.

Характеристики реактивного конденсатора

Параметры, характеризующие элементы, наносятся на их внешних корпусах, там же прописываются сведения о типе, наименовании изготовителя и дате выпуска продукции.

Перечень основных критериев:

  • Номинальная ёмкость – это значение, определенное ГОСТом, задаваемое в диапазоне 0 – 9999 Пф, наносимое на схемы, но без обозначений. Если числа указываются на самом конденсаторе в пределах от 10000 до 9999 в мкФ, то значения надписываются в мкФ (uF).

Единицы

  • Далее – наносятся условные отклонения от номинала.
  • Еще один важный параметр – показатель номинального напряжения (В). Специалистами рекомендовано использовать в работе элемент с дополнительными ресурсами. Не допускается применять прибор с меньшими показателями, для предотвращения пробоя изоляции из диэлектрического материала, что провоцирует поломку детали.
  • Иные характерные параметры на корпусах – рабочая температура, показатель предельной силы тока.
  • Количество фаз, от которых осуществляется работа – одна или три.
  • По виду установки: внутренняя и наружная.

Дополнительные характеристики устройства для накопления зарядов:

  • Удельная ёмкость – это отношение непосредственных габаритов к массе диэлектрического элемента.
  • Рабочее напряжение – это номинал, который выдерживает деталь при подаче напряжения на изоляцию.
  • Стабильность температуры. В этом диапазоне изменений не отмечается.
  • Сопротивление изоляционного слоя. Этот параметр определяется исходя из тока утечки и саморазряда.

Поле

  • Эквивалентное сопротивление – обуславливается потерями на выводах и в диэлектрическом слое.
  • Процесс адсорбции. Это разность потенциалов, образовавшаяся на обкатках после обнуления заряда.
  • Сопротивление емкости. Возникает при снижении проводимости подачи переменного тока.
  • Полярность. При приложении потенциала с соответствующим значением конденсатор функционирует корректно.
  • Эквивалентная индуктивность. Это параметр, образующийся на контактах, для возникновения колебательного контура.

Характеристики

Как рассчитать реактивное сопротивление конденсатора к переменному току

Расчет сопротивления конденсатора проводится по установленному алгоритму. Сопротивление емкости относится к реактивному, так как потребляемой мощности не требуется. Согласно закону Ома, для схемы предусматривается формула расчета:

I = U/Xc, где:

  • I — это обозначение тока (А);
  • U — показатель напряжения (В);
  • Xc — емкость (мкФ).

Действующим значением обладают ток и напряжение, в связи с чем предназначение конденсаторов очевидно не только для разделения тока и напряжения, но и для преобразования частот. Чем ниже емкость, тем выше частотность переменного тока.

При последовательном включении активного сопротивления, общее значение определяется: Z = (R 2 +Xc 2) ½.

Важно! Сила тока напрямую зависима от напряжения и обратно пропорциональна сопротивлению, согласно закону Ома.

Расчет сопротивления катушки индуктивности

В то время, когда внутри катушки протекает переменный ток, создается магнитное поле и движущая сила ЭДС, которая создает препятствие для трансформации тока. Если показатель электротока возрастает, то сила (ЭДС) имеет отрицательное значение, что не дает току нарастать, а, при уменьшении, отмечается, напротив, положительный эффект, поэтому убывания силы не наблюдается. Именно по такой схеме действует сопротивление в цепи, в связи с чем поток электронов не может изменять направление.

Элемент

Любое противодействие в виде прибора, обладающего собственным сопротивлением, вызывает в цепи напряжение, подавляющее ЭДС, причем оно противоположно по знаку и эквивалентно по модулю.

Вам это будет интересно  Определение падения напряжения

Если сила тока равна нулю, то электродвижущая сила доходит до максимума, поэтому возникает расхождение потока и напряжения во времени. При приложении к выводам элемента показателя U, ток не проходит мгновенно – ему противостоит электромагнитная движущая сила (ЭДС).

Реактивное сопротивление, образующееся на катушке, рассчитывается по формуле:

u = -ε = L(di/dt), где:

  • ε – ЭДС;
  • L – индуктивность;
  • (di/dt) – скорость изменения потока.

Важно! ЭДС напрямую зависит от индуктивности и скорости, обуславливающей изменения движения потока электронов.

В технической литературе такое сопротивление именуется емкостным, и используется в емкостных делителях при переменном потоке электронов. Таким образом, реактивное сопротивление конденсатора – это важнейшее понятие в электротехнике, позволяющее правильно рассчитать ёмкость прибора и собрать работоспособную цепь.

Источник: https://rusenergetics.ru/polezno-znat/reaktivnoe-soprotivlenie-kondensatora

Реактивное сопротивление XL и XC

Реактивное сопротивление – электрическое сопротивление переменному току, обусловленное передачей энергии магнитным полем в индуктивностях или электрическим полем в конденсаторах.

Элементы, обладающие реактивным сопротивлением, называют реактивными.

Реактивное сопротивление катушки индуктивности

При протекании переменного тока I в катушке, магнитное поле создаёт в её витках ЭДС, которая препятствует изменению тока.
При увеличении тока, ЭДС отрицательна и препятствует нарастанию тока, при уменьшении — положительна и препятствует его убыванию, оказывая таким образом сопротивление изменению тока на протяжении всего периода.

В результате созданного противодействия, на выводах катушки индуктивности в противофазе формируется напряжение U, подавляющее ЭДС, равное ей по амплитуде и противоположное по знаку.

При прохождении тока через нуль, амплитуда ЭДС достигает максимального значения, что образует расхождение во времени тока и напряжения в 1/4 периода.

Если приложить к выводам катушки индуктивности напряжение U, ток не может начаться мгновенно по причине противодействия ЭДС, равного -U, поэтому ток в индуктивности всегда будет отставать от напряжения на угол 90°. Сдвиг при отстающем токе называют положительным.

Запишем выражение мгновенного значения напряжения u исходя из ЭДС (ε), котораяпропорциональна индуктивности L и скорости изменения тока: u = -ε = L(di/dt).
Отсюда выразим синусоидальный ток .

Интегралом функции sin(t) будет -соs(t), либо равная ей функция sin(t-π/2).
Дифференциал dt функции sin(ωt) выйдет из под знака интеграла множителем 1.
В результате получим выражение мгновенного значения тока со сдвигом от функции напряжения на угол π/2 (90°).
Для среднеквадратичных значений U и I в таком случае можно записать .

В итоге имеем зависимость синусоидального тока от напряжения согласно Закону Ома, где в знаменателе вместо R выражение ωL, которое и является реактивным сопротивлением:

Реактивное сопротивлениие индуктивностей называют индуктивным.

Реактивное сопротивление конденсатора

Электрический ток в конденсаторе представляет собой часть или совокупность процессов его заряда и разряда – накопления и отдачи энергии электрическим полем между его обкладками.

В цепи переменного тока, конденсатор будет заряжаться до определённого максимального значения, пока ток не сменит направление на противоположное. Следовательно, в моменты амплитудного значения напряжения на конденсаторе, ток в нём будет равен нулю.Таким образом, напряжение на конденсаторе и ток всегда будут иметь расхождение во времени в четверть периода.

В результате ток в цепи будет ограничен падением напряжения на конденсаторе, что создаёт реактивное сопротивление переменному току, обратно-пропорциональное скорости изменения тока (частоте) и ёмкости конденсатора.

Если приложить к конденсатору напряжение U, мгновенно начнётся ток от максимального значения, далее уменьшаясь до нуля. В это время напряжение на его выводах будет расти от нуля до максимума. Следовательно, напряжение на обкладках конденсатора по фазе отстаёт от тока на угол 90 °. Такой сдвиг фаз называют отрицательным.

Ток в конденсаторе является производной функцией его заряда i = dQ/dt = C(du/dt).
Производной от sin(t) будет cos(t) либо равная ей функция sin(t+π/2)

Источник: https://tel-spb.ru/rea.html

Электрическое сопротивление. Определение, единицы измерения, удельное, полное, активное, реактивное

Электрическое сопротивление — электротехническая величина, которая характеризует свойство материала препятствовать протеканию электрического тока. В зависимости от вида материала, сопротивление может стремиться к нулю — быть минимальным (мили/микро омы — проводники, металлы), или быть очень большим (гига омы — изоляция, диэлектрики). Величина обратная электрическому сопротивлению — это проводимость.

ЭТО ИНТЕРЕСНО:  Как обозначается удельное сопротивление

Единица измерения электрического сопротивления — Ом. Обозначается буквой R. Зависимость сопротивления от тока и напряжения в замкнутой цепи определяется законом Ома.

Омметр — прибор для прямого измерения сопротивления цепи. В зависимости от диапазона измеряемой величины, подразделяются на гигаомметры (для больших сопротивление — при измерении изоляции), и на микро/милиомметры (для маленьких сопротивлений — при измерении переходных сопротивлений контактов, обмоток двигателей и др.).

Существует большое разнообразие омметров по конструктиву разных производителей, от электромеханических до микроэлектронных. Стоит отметить, что классический омметр измеряет активную часть сопротивления (так называемые омики).

Любое сопротивление (металл или полупроводник) в цепи переменного токаимеет активную и реактивную составляющую. Сумма активного и реактивного сопротивления составляют полное сопротивление цепи переменного тока и вычисляется по формуле:

где, Z — полное сопротивление цепи переменного тока;

R — активное сопротивление цепи переменного тока;

Xc — емкостное реактивное сопротивление цепи переменного тока;

( С- емкость, w — угловая скорость переменного тока)

Xl — индуктивное реактивное сопротивление цепи переменного тока;

( L- индуктивность, w — угловая скорость переменного тока).

Активное сопротивление— это часть полного сопротивления электрической цепи, энергия которого полностью преобразуется в другие виды энергии (механическую, химическую, тепловую). Отличительным свойством активной составляющей — полное потребление всей электроэнергии (в сеть обратно в сеть энергия не возвращается), а реактивное сопротивление возвращает часть энергии обратно в сеть (отрицательное свойство реактивной составляющей).

Физический смысл активного сопротивления

Каждая среда, где проходят электрические заряды, создаёт на их пути препятствия (считается, что это узлы кристаллической решётки), в которые они как-бы ударяются и теряют свою энергию, которая выделяется в виде тепла.

Таким образом, происходит падение напряжения (потеря электрической энергии), часть которого теряется из-за внутреннего сопротивления проводящей среды.

Численную величину, характеризующую способность материала препятствовать прохождению зарядов и называют сопротивлением. Измеряется оно в Омах (Ом) и является обратно пропорциональной электропроводности величиной.

Разные элементы периодической системы Менделеева имеют различные удельные электрические сопротивления (р), например, наименьшим уд. сопротивлением обладают серебро (0,016 Ом*мм2/м), медь (0,0175 Ом*мм2/м), золото (0,023) и алюминий (0,029). Именно они применяются в промышленности в качестве основных материалов, на которых строится вся электротехника и энергетика. Диэлектрики, напротив, обладают высоким уд. сопротивлением и используются для изоляции.

Сопротивление проводящей среды может значительно изменяться в зависимости от сечения, температуры, величины и частоты тока. К тому же, разные среды обладают различными носителями зарядов (свободные электроны в металлах, ионы в электролитах, «дырки» в полупроводниках), которые являются определяющими факторами сопротивления.

Физический смысл реактивного сопротивления

В катушках и конденсаторах при подаче напряжения происходит накопление энергии в виде магнитных и электрических полей, что требует некоторого времени.

Магнитные поля в сетях переменного тока изменяются вслед за меняющимся направлением движения зарядов, при этом оказывая дополнительное сопротивление.

Кроме того, возникает устойчивый сдвиг фаз напряжения и силы тока, а это приводит к дополнительным потерям электроэнергии.

Удельное сопротивление

Как узнать сопротивление материала, если по нему не течет ток и у нас нет омметра? Для это существует специальная величина —удельное электрическое сопротивление материалов

(это табличные значения, которые определены опытным путем для большинства металлов). С помощью этого значения и физических величин материала, мы можем вычислить сопротивление по формуле:

где,p— удельное сопротивление (единицы измерения ом*м/мм2);

l — длина проводника (м);

Источник: https://pue8.ru/elektrotekhnik/413-elektricheskoe-soprotivlenie.html

Реактивное сопротивление: формирование электросопротивления

В электротехнике активным и реактивным сопротивлением принято называть величину, характеризующую силу противодействия участка электрической цепи направленному (упорядоченному) движению частиц или квазичастиц — носителям электрического заряда. Это противодействие формируется методом преобразования электроэнергии в иные формы энергии. В случае необратимого изменения электрической энергии звена цепи в иные виды энергии, противодействие будет активным.

Сеть с переменным током обладает необратимой трансформацией и передачей энергии элементам электрической цепи. Осуществляя обменный процесс электроэнергии с компонентами цепи и источником питания, сопротивление будет реактивным.

Если в качестве примера рассматривать микроволновую печь, электрическая энергия в ней необратимо конвертируется в тепловую, в результате чего микроволновая печь получает активное противодействие, равно как элементы, трансформирующие электрическую энергию в световую, механическую и т. д.

Переменный ток, проходя через сосредоточенные электрические элементы, формирует реактивное сопротивление, которое вызвано главным образом индуктивностью и ёмкостью.

Активное сопротивление находится в прямой зависимости от количества полных циклов изменения электродвижущей силы (ЭДС), произошедших за одну секунду. Чем больше это количество, тем выше активное сопротивление.

Однако немало потребителей имеют индуктивные и емкостные свойства в момент прохождения сквозь них переменного тока. К ним можно отнести:

  • конденсаторы;
  • дроссели;
  • электромагниты;
  • трансформаторы.

Следует учитывать как активное, так и реактивное сопротивление, которое обусловлено присутствием в электропотребителе емкостного и индуктивного признака. Прерывая и замыкая цепь постоянного тока, проходящего по любой из обмоток, параллельно с преобразованием тока произойдет и изменение магнитного потока внутри самой обмотки, в итоге в ней появляется электродвижущая сила самоиндукции.

Аналогичная ситуация будет проявляться и в обмотке, подключенной к цепи с переменным током, с тем лишь отличием, что в этом случае ток беспрерывно меняется как по параметру, так и в направлении. Отсюда следует, что беспрерывно будет меняться параметр магнитного потока, проникающего в обмотку, в которой индуктируется электродвижущая сила самоиндукции.

Вместе с тем вектор электродвижущей силы неизменно таков, что он препятствует преобразованию тока. Следовательно, при нарастании внутри обмотки электродвижущая сила самоиндукции будет ставить своей целью приостановить возрастание тока, а при уменьшении — напротив, будет стараться сохранить убывающий ток.

Получается, что ЭДС, появляющаяся внутри проводника (обмотки), задействованного в цепи переменного тока, постоянно будет противодействовать току, препятствуя его изменению. Другими словами, ЭДС можно расценивать как вспомогательное сопротивление, которое совместно с активным сопротивлением катушки создает синергический эффект противодействия идущему через катушку переменному току.

Электротехнический закон реактанса

Формирование реактивного сопротивления происходит с помощью спада реактивной мощности, израсходованной на создание электромагнитного поля в электрической цепи. Спад реактивной мощности образуется способом подсоединения к преобразователю аппарата с активным сопротивлением.

Двухполюснику, подключенному к цепи, получается аккумулировать только лимитированную долю заряда до изменения полярности напряжения на диаметрально противоположную. Благодаря этому электроток не опускается до нулевой отметки, как в цепях постоянного тока. Накопление заряда конденсатором напрямую зависит от частоты электротока.

Формулой реактивного сопротивления определяется мнимая часть импеданса:

Z = R+jX, где Z — комплексное электросопротивление, R — активное электросопротивление, X — реактивное электросопротивление, j — мнимая единица.

Величину реактивного электросопротивления можно выразить через значения ёмкостного и индуктивного противодействия.

Электрический импеданс

Полное сопротивление цепи переменного тока или импеданс есть отражение трансформирующейся во времени величины тока. В электротехнической литературе обозначается латинской буквой Z. Импеданс является двумерной (векторной) величиной, включающей в себя две независимые скалярные одномерные характеристики: активное и реактивное противодействие переменному электротоку. Проще говоря, полное сопротивление — это активное и реактивное в сумме.

Активный компонент импеданса, обозначаемый буквой R, является критерием уровня, с которым материал противодействует потоку отрицательно заряженных частиц среди своих атомов. Низкоомными материалами принято считать:

Высокоомные материалы называют диэлектриками или изоляторами. К перечню таких материалов можно отнести:

  • полиэтилен;
  • слюду;
  • оргстекло.

Вещества с промежуточной степенью противодействия относят к группе полупроводников. В эту группу входят:

  • окисды металлов;
  • сернистые соединения;
  • соединения с селеном;
  • химические элементы (мышьяк, германий, фосфор, кремний, сера, теллур, углерод, гален и др.).

Полное сопротивление вычисляется по формуле: Z = √ R2 +(XL — XC)2, где: R — активное электросопротивление; XL — индуктивное сопротивление, единица измерения Ом; XC — емкостное противодействие, единица измерения Ом. Полное противодействие рассчитывается пошагово. Вначале рисуют схему, потом вычисляют равнозначные противодействия индивидуально для активного, индуктивного и емкостного компонентов нагрузки и вычисляется полное противодействие электрической цепи.

Источник: https://220v.guru/fizicheskie-ponyatiya-i-pribory/moschnost/soprotivlenie/svoystva-aktivnogo-i-reaktivnogo-soprotivleniya.html

Активное и реактивное сопротивление в цепи переменного тока

В электрической цепи переменного тока существует два вида сопротивлений: активное и реактивное. Это является существенным отличием от цепей постоянного тока.

Активное сопротивление

При прохождении тока через элементы, имеющие активное сопротивление, потери выделяющейся мощности необратимы. Примером может служить резистор, выделяющееся на нем тепло, обратно в электрическую энергию не превращается. Кроме резистора активным сопротивлением может обладать линии электропередач, соединительные провода, обмотки трансформатора или электродвигателя.

Отличительной чертой элементов имеющих чисто активное сопротивление – это совпадение по фазе тока и напряжения, поэтому вычислить его можно по формуле 

Активное сопротивление зависит от физических параметров проводника, таких как материал, площадь сечения, длина, температура.

Реактивное сопротивление

При прохождении переменного тока через реактивные элементы возникает реактивное сопротивление. Оно обусловлено в первую очередь ёмкостями и индуктивностями.

Индуктивностью в цепи переменного тока обладает катушка индуктивности, причём в идеальном случае, активным сопротивлением её обмотки пренебрегают. Реактивное сопротивление катушки переменному току создаётся благодаря её ЭДС самоиндукции. Причем с ростом частоты тока, сопротивление также растёт.

Реактивное сопротивление катушки зависит от частоты тока и индуктивности катушки 

Конденсатор обладает реактивным сопротивлением благодаря своей ёмкости. Его сопротивление с увеличением частоты тока уменьшается, что позволяет его активно использовать в электронике в качестве шунта переменной составляющей тока.

Сопротивление конденсатора можно рассчитать по формуле 

Треугольник сопротивлений

Цепи переменного тока обладают полным сопротивлением. Полное сопротивление цепи определяется как сумма квадратов активного и реактивного сопротивлений 

Графическим изображением этого выражения служит треугольник сопротивлений, который можно получить в результате расчёта последовательной RLC-цепи. Выглядит он следующим образом:

На треугольнике видно, что катетами являются активное и реактивное сопротивление, а полной сопротивление гипотенуза.

1 1 1 1 1 1 1 1 1 1 4.22 (88 Голоса)

Источник: https://electroandi.ru/toe/ac/aktivnoe-i-reaktivnoe-soprotivlenie-v-tsepi-peremennogo-toka.html

Активное и реактивное сопротивление это

В электротехнике понятие сопротивления представляет собой величину, за счет которой определенная часть цепи может противодействовать электрическому току. Она образуется за счет изменения и перехода электроэнергии в другое энергетическое состояние. Данное явление присуще только переменному току, когда в сети образуется активное и реактивное сопротивление, выражающееся в необратимом изменении энергии или передаче этой энергии между отдельными компонентами электрической цепи.

В случае необратимых изменений электроэнергии сопротивление будет считаться активным, а при наличии обменных процессов – реактивным.

Как смотреть силу тока в цепи через осциллограф

Чем же резистор отличается от  катушки индуктивности  и конденсатора? Понятное дело, что выполняемыми функциями, но этим все не ограничивается. Итак, давайте рассмотрим самую простую схемку во всей электронике:

На схеме мы видим генератор частоты и резистор.

Давайте визуально посмотрим, что у нас творится в этой схеме. Для этого, как я уже сказал, нам понадобится генератор частоты

А также цифровой осциллограф:

С помощью него мы будем смотреть напряжение и  силу тока . 

Что?

Силу тока?

Но ведь осциллограф предназначен для того, чтобы рассматривать форму сигнала напряжения? Как же мы будем рассматривать форму сигнала силы тока? А все оказывается просто). Для этого достаточно вспомнить правило шунта.

Кто не помнит –  напомню. Имеем обыкновенный резистор:

Что будет, если через него прогнать электрический ток?

На концах резистора у нас будет падение напряжения. То есть, если замерить с помощью мультиметра напряжение на его концах, мультиметр покажет какое-то значение в Вольтах

И теперь главный вопрос: от чего зависит падение напряжения на резисторе? В дело опять же вступает закон Ома для участка цепи: I=U/R. Отсюда U=IR. Мы видим зависимость от номинала самого резистора и от силы тока, текущей в данный момент в цепи. Слышите? От СИЛЫ ТОКА! Так почему бы нам не воспользоваться таким замечательным свойством и не глянуть силу тока через падение напряжения на  самом резисторе? Ведь номинал резистора у нас постоянный и почти не изменяется с изменением силы тока ;-)

Осциллограмма силы тока на активном сопротивлении

В данном опыте нам не обязательно знать номинал силы тока в цепи. Мы будем просто смотреть, от чего зависит сила тока и изменяется ли вообще?

Поэтому,  наша схема примет вот такой вид:

В этом случае шунтом будет являться резистор сопротивлением в 0,5 Ом. Почему именно 0,5 Ом? Да потому что он не будет сильно греться, так как обладает маленьким сопротивлением, а также  его номинал вполне достаточен, чтобы снять с него напряжение.

Осталось снять напряжение с генератора, а также со шунта с помощью осциллографа. Если вы не забыли, со шунта мы снимаем осциллограмму силы тока в цепи. Красная осциллограмма – это напряжение с генератора Uген , а желтая осциллограмма  – это напряжение с шунта Uш , в нашем случае  – сила тока.  Смотрим, что у нас получилось:

Частота 28 Герц:

Частота 285 Герц:

Частота 30 Килогерц:

Как вы видите, с ростом частоты сила тока у нас осталась такой же.

Давайте побалуемся формой сигнала:

Как мы видим, сила тока  полностью повторяет форму сигнала напряжения.

Итак, какие можно сделать выводы?

1) Сила тока через активное (омическое) сопротивление имеет такую же форму, как и форма напряжения.

2) Сила тока и напряжение на активном сопротивлении совпадают по фазе, то есть куда напряжение, туда и ток. Они двигаются синфазно, то есть одновременно.

3) С ростом частоты ничего не меняется (если только на очень высоких частотах).

Конденсатор в цепи переменного тока

Ну а теперь давайте вместо резистора поставим конденсатор.

ЭТО ИНТЕРЕСНО:  Как припаять штекер к наушникам

Смотрим осциллограммы:

Как вы видите, конденсатор обладает сопротивлением, так  как сила тока в цепи значительно уменьшилась. Но обратите внимание, что произошел сдвиг желтой осциллограммы, то бишь осциллограммы силы тока.

Вспоминаем алгебру старшие классы. Итак, полный период T – это 2П

Теперь давайте прикинем, какой сдвиг фаз у нас получился на графике:

Где-то примерно П/2 или 90 градусов.

Почему так произошло? Во всем виновато физическое свойство конденсатора. В самые первые доли секунд, конденсатор ведет себя как проводник с очень малым сопротивлением, поэтому сила тока в этот момент будет максимальна. В этом можно легко убедиться, если резко подать на конденсатор напряжение и в начальный момент времени посмотреть, что происходит с силой тока

Красная осциллограмма – это напряжение, которое мы подаем на конденсатор, а желтая – это сила тока в цепи конденсатора. По мере заряда конденсатора сила тока падает и достигает нуля при полном заряде конденсатора.

К чему приведет дальнейшее увеличение частоты? Давайте посмотрим:

50 Герц.

100 Герц

200 Герц

Как вы видите, с увеличением частоты, у нас сила тока в цепи с конденсатором возрастает.

Катушка индуктивности в цепи переменного тока

Ну а теперь давайте возьмем катушку индуктивности вместо конденсатора:

Проводим все аналогичные операции, как и с конденсатором. Смотрим на осциллограммы в цепи с катушкой индуктивности:

Если помните, вот такую осциллограмму мы получили в схеме с конденсатором:

Видите разницу? На катушке индуктивности ток отстает от напряжения на  90 градусов, на П/2, или, как еще говорят, на четверть периода (весь период у нас 2П или 360 градусов).

Так-так-так. Давайте соберемся с мыслями. То есть в цепи с переменным синусоидальным током,  ток на конденсаторе опережает напряжение на 90 градусов, а на катушке индуктивности ток отстает от напряжения тоже на 90 градусов? Да, все верно.

Почему на катушке ток отстает от напряжения?

Не будем углубляться в различные физические процессы и формулы, просто сочтем за данность, что сила тока не может резко возрастать на катушке индуктивности. Для этого проведем простой опыт. Так же как и на конденсатор, мы резко подадим напряжение на катушку индуктивности, и посмотрим, что случилось с силой тока.

Как вы видите, при резкой подаче напряжения на катушку, сила тока не стремится также резко возрастать, а возрастает постепенно, если быть точнее, по экспоненте.

Давайте вспомним, как это было у конденсатора:

Все с точностью наоборот! Можно даже сказать, что катушка – это полная противоположность конденсатору ;-)

Ну и напоследок давайте еще побалуемся частотой:

240 Килогерц

34 Килогерца

17 Килогерц

10 Килогерц

Вывод?

С уменьшением частоты сила тока через катушку увеличивается.

Мощность в цепи с реактивными радиоэлементами

Для дальнейшего объяснения этого явления нам потребуется наша осциллограмма с катушки индуктивности:

Итак, давайте выделим на ней один период и разделим его на 4 части, то есть по 90 градусов каждая или π/2.

Давайте начнем с такого понятия, как мощность. Если не забыли, мощность – это сила тока помноженное на напряжение, то есть P=IU. Итак, в первую четвертинку периода t1 у нас напряжение принимает положительные значения и сила тока тоже положительное. Плюс на плюс дает плюс. В эту четверть периода энергия поступает из источника в реактивное сопротивление.

Теперь давайте рассмотрим отрезок времени t2. Здесь ток со знаком “плюс”, а напряжение со знаком “минус”. В итоге плюс на минус дает минус. Получается мощность со знаком “минус”. А разве так бывает? Еще как бывает! В этот промежуток времени реактивный радиоэлемент отдает запасенную энергию обратно в источник напряжения. Для лучшего понимания давайте рассмотрим простой житейский пример.

Представим себе кузнеца за работой:

Не знаю, какое было у вас детство, но я когда был пацаном, брал свинец с аккумуляторов и плющил его в металлические пластинки. И что думаете? Свинец нагревался. Не так, чтобы прям обжигал, а был тепленький на ощупь. То есть моя энергия удара превращалась в тепло, можно даже сказать, в полезную энергию.

А что если взять пружину от стоек ВАЗа и ударять по ней?

С пружиной не станет НИ-ЧЕ-ГО! Она ведь не свинец. Но заметьте вот такую вещь: как только мы начинаем “плющить” пружину кувалдой, у нас она начинает сжиматься. И вот она сжалась до упора и выстрелила вверх, подхватив с собой тяжелую кувалду, которая только что пыталась ее расплющить.

То есть в данном случае энергия вернулась обратно в источник энергии, то есть обратно  к кузнецу. Он вроде как и пытался расплющить пружину, но пружина вернула энергию обратно своим разжатием. То есть кузнецу не надо уже было подымать тяжелый молот, так как за него это уже сделала пружина.

Разжатие пружины и возврат ею энергии обратно – это и есть отрицательная мощность. В этом случае энергия возвращается обратно в источник. Хорошо ли это или плохо – это уже другая история.

В третий промежуток времени  t3 и ток и напряжение у нас со знаком “минус”. Минус на минус – это плюс. То есть реактивный элемент снова поглощает энергию, ну а на t4, снова ее отдает, так как плюс на минус дает минус.

В результате за весь период у нас суммарное потребление энергии равно чему?

Правильно, нулю!

Так что же это получается тогда? На катушке и конденсаторе не будет выделяться никакой энергии? Получается так. Поэтому в схемах они чаще всего холодные, хотя могут быть и слегка теплыми, так как реальные параметры катушки и конденсатора выглядят совсем по другому.

Эквивалентная схема реальной катушки индуктивности выглядит вот так:

где

RL  – это сопротивление потерь. Это могут быть потери в проводах, так как любой провод обладает сопротивлением. Это могут быть потери в диэлектрике, потери в сердечнике и потери на вихревые токи.  Как видите, раз есть сопротивление, значит на нем может выделяться мощность, то есть тепло.

L – собственно сама индуктивность катушки

С – межвитковая емкость.

А вот и эквивалентная схема реального конденсатора:

где

r – сопротивление диэлектрика и корпуса между обкладками

С – собственно сама емкость конденсатора

ESR – эквивалентное последовательное сопротивление

ESI (ESL) – эквивалентная последовательная индуктивность

Здесь мы тоже видим такие параметры, как r  и ESR, которые на высоких частотах будут еще лучше себя проявлять, благодаря скин-эффекту. Ну и, соответственно, на них будет выделяться мощность, что приведет к небольшому малозаметному нагреву.

Резюме

Резистор обладает активным (омическим) сопротивлением. Катушка индуктивности и конденсатор обладают реактивным сопротивлением.

В цепи переменного тока на конденсаторе ток опережает напряжение на 90 градусов, а на катушке ток отстает от напряжения на 90 градусов.

Сопротивление катушки вычисляется по формуле

Сопротивление конденсатора вычисляется по формуле:

В цепи переменного тока на идеальном реактивном сопротивлении не выделяется мощность.

Реальные катушка и конденсатор имеют в своем составе паразитные параметры, которые имеют некоторое сопротивление. Поэтому реальные катушка и конденсатор не обладают чисто реактивным сопротивлением.

Источник: https://www.ruselectronic.com/reaktivnoe-soprotivlenie-i-moshchnost/

Индуктивное сопротивление

кликните по картинке чтобы увеличить

Мы знаем, что на встречу нарастающему току генератора идет ток самоиндукции катушки. Вот это противодействие тока самоиндукции катушки нарастающему току генератора и называется индуктивным сопротивлением.

На преодоление этого противодействия затрачивается часть энергии переменного тока генератора. Вся эта часть энергии полностью превращается в энергию магнитного поля катушки. Когда ток генератора будет убывать, магнитное поле катушки также будет убывать, пресекая  катушку и индуктируя в цепи ток самоиндукции. Теперь ток самоиндукции будет идти в одном направлении с убывающим током генератора.

Таким образом вся энергия затраченная током генератора на преодоление противодействия тока самоиндукции катушки полностью вернулась в цепь в виде энергии электрического тока. Поэтому индуктивное сопротивление является реактивным, т. е. не вызывающим безвозвратных потерь энергии.

Единицей измерения индуктивного сопротивления является Ом

Индуктивное сопротивление обозначается XL.

Буква X- означает реактивное сопротивление, а L означает что это реактивное сопротивление является индуктивным.

f- частота Гц, L- индуктивность катушки Гн,  XL- индуктивное сопротивление Ом

Соотношение между фазами U и I на XL

кликните по картинке чтобы увеличить

 

Так как активное сопротивление катушки по условию равно нулю (чисто индуктивное сопротивление), то все напряжение приложенное генератором к катушке идет на преодоление э. д. с. самоиндукции катушки. Это значит что график напряжения приложенного генератором к катушке равен по амплитуде графику э. д. с. самоиндукции катушки и находится с ним в противофазе.

Напряжение приложенное генератором к чисто индуктивному сопротивлению и ток идущий от генератора по чисто индуктивному сопротивлению сдвинуты по фазе на 900 ,т. е. напряжение опережает ток на 900.

 Реальная катушка индуктивности

 Реальная катушка кроме индуктивного сопротивления имеет еще и активное сопротивление. Эти сопротивления следует считать соединенными последовательно.

  На активном сопротивлении катушки напряжение приложенное генератором и ток идущий от генератора совпадают по фазе.

На чисто индуктивном сопротивлении напряжение приложенное генератором и ток идущий от генератора  сдвинуты по фазе на 900. Напряжение опережает ток на 900. Результирующее  напряжение приложенное генератором к катушке определяется по правилу параллелограмма.

 

кликните по картинке чтобы увеличить

Результирующее  напряжение приложенное генератором к катушке всегда опережает ток на на угол меньший 900.

Величина угла φ зависит от величин активного и индуктивного сопротивлений катушки.

О результирующем сопротивлении катушки

Результирующее сопротивление катушки нельзя находить суммированием величин  её активного  и реактивного сопротивлений.

    Результирующее сопротивление катушки Z равно

Источник: http://stoom.ru/content/view/100/83/

Активное, емкостное и индуктивное сопротивление. Закон Ома для цепей переменного тока

Определение 1

Пусть источник переменного тока включен в цепь, в которой индуктивностью и емкостью можно пренебречь. Переменный ток изменяется в соответствии с законом:

\[I\left(t\right)=I_m{sin \left(\omega t\right)\ \left(1\right).\ }\]

Рисунок 1.

Тогда, если применить к участку цепи ($а R в$) (рис.1) закон Ома получим:

\[U=IR=I_m{Rsin \left(\omega t\right)\ \left(2\right),\ }\]

где $U$ — напряжение на концах участка. Разность фаз между током и напряжением равна нулю. Амплитудное значение напряжения ($U_m$) равно:

\[U_m=RI_m\left(3\right),\]

где коэффициент $R$ — называется активным сопротивлением. Наличие активного сопротивления в цепи всегда приводит к выделению тепла.

Допустим, что в участок цепи включен конденсатор емкости $С$, а $R=0$ и $L=0$. Будем считать силу тока ($I$) положительной, если она имеет направление, которое указано на рис. 2. Пусть заряд на конденсаторе равен $q$.

Рисунок 2.

Мы можем использовать следующие соотношения:

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

Если $I(t)$ определена уравнением (1), то заряд выражен как:

где $q_0$ произвольный постоянный заряд конденсатора, который не связан с колебаниями тока, поэтому можем допустить, что $q_0=0.$ Получим напряжение равно:

Формула (6) показывает, что на конденсаторе колебания напряжения отстают от колебаний силы тока по фазе на $\frac{\pi }{2}.$ Амплитуда напряжения на емкости равна:

Величину $X_C=\frac{1}{\omega C}$ называют реактивным емкостным сопротивлением (емкостным сопротивлением, кажущимся сопротивлением емкости). Если ток постоянный, то $X_C=\infty $. Это значит, что постоянный ток не течет через конденсатор. Из определения емкостного сопротивления видно, что при больших частотах колебаний, малые емкости являются небольшими сопротивлениями переменного тока.

Индуктивное сопротивление

Пусть участок цепи имеет только индуктивность (рис.3). Будем считать $I>0$, если ток направлен от $а$ к $в$.

Рисунок 3.

Если в катушке течет ток, то в индуктивности появляется ЭДС самоиндукции, следовательно, закон Ома примет вид:

По условию $R=0. \mathcal E$ самоиндукции можно выразить как:

Из выражений (8), (9) следует, что:

Амплитуда напряжения в данном случае равна:

где $X_L-\ $индуктивное сопротивление (кажущееся сопротивление индуктивности).

Закон Ома для цепей переменного тока

Определение 2

Выражение вида:

\[I_m=\frac{U_m}{\sqrt{R2+{\left(\omega L-\frac{1}{\omega C}\right)}2}}\left(12\right).\]

где

\[Z=\sqrt{R2+{\left(\omega L-\frac{1}{\omega C}\right)}2}(13)\]

называют полным электросопротивлением, или импедансом, иногда называют законом Ома для переменного тока. Однако необходимо помнить, что формула (12) относится к амплитудам тока и напряжения, а не мгновенным их значениям.

Пример 1

Задание: Чему равно действующее значение силы тока в цепи. Цепь переменного тока состоит из последовательно соединенных: конденсатора емкостью $C$, катушки индуктивности $L$, активного сопротивления $R$. На зажимы цепи подается напряжение действующее напряжение $U$ частота которого $u$.

Решение:

Так как все элементы цепи соединены последовательно, то сила тока во всех элементах одинакова.

Амплитудное значение силы тока выражается «законом Ома для переменного тока»:

\[I_m=\frac{U_m}{\sqrt{R2+{\left(\omega L-\frac{1}{\omega C}\right)}2}}\left(1.1\right)\]

оно связано с действующим значением силы тока как:

\[I=\frac{I_m}{\sqrt{2}}\left(1.2\right).\]

В условиях задачи мы имеем действующее значение напряжения $U$, нам в формуле (1.1) требуется амплитуда напряжения, используя формулу:

\[U=\frac{U_m}{\sqrt{2}}\to U_m=\sqrt{2}U\left(1.3\right).\]

Подставим в формулу (1.2) формулы (1.1) и (1.3), получим:

\[I=\frac{1}{\sqrt{2}}\frac{\sqrt{2}U}{\sqrt{R2+{\left(\omega L-\frac{1}{\omega C}\right)}2}}=\frac{U}{\sqrt{R2+{\left(\omega L-\frac{1}{\omega C}\right)}2}}=\frac{U}{\sqrt{R2+{\left(2\pi u L-\frac{1}{2\pi u C}\right)}2}},\]

где $\omega =2\pi u .$

Ответ: $I=\frac{U}{\sqrt{R2+{\left(2\pi u L-\frac{1}{2\pi u C}\right)}2}}.$

Пример 2

Задание: Используя условия задачи в первом примере, найдите действующие значения напряжений на катушке индуктивности ($U_L$), сопротивлении ($U_R$), конденсаторе ($U_C$).

Решение:

Используем результат примера 1. Напряжение на катушке индуктивности выражается формулой:

\[U_L=I\omega L=2 \pi u L\frac{U}{\sqrt{R2+{\left(2 \pi u L-\frac{1}{2 \pi u C}\right)}2}}.\]

Напряжение на активном сопротивлении ($U_R$) равно:

\[U_R=IR=\frac{UR}{\sqrt{R2+{\left(2\pi u L-\frac{1}{2\pi u C}\right)}2}}.\]

Напряжение на конденсаторе ($U_C$) определяется как:

\[U_C=\frac{I}{C2 \pi u}=\frac{1}{C2 \pi u}\frac{U}{\sqrt{R2+{\left(2 \pi u L-\frac{1}{2 \pi u C}\right)}2}}.\]

Ответ: $U_L=2\pi u L\frac{U}{\sqrt{R2+{\left(2\pi u L-\frac{1}{2\pi u C}\right)}2}},\ U_R=\frac{UR}{\sqrt{R2+{\left(2\pi u L-\frac{1}{2\pi u C}\right)}2}},U_C=\frac{1}{C2\pi u }\frac{U}{\sqrt{R2+{\left(2\pi u L-\frac{1}{2\pi u C}\right)}2}}.$

Источник: https://spravochnick.ru/fizika/aktivnoe_emkostnoe_i_induktivnoe_soprotivlenie_zakon_oma_dlya_cepey_peremennogo_toka/

Понравилась статья? Поделиться с друзьями:
220 вольт
Для любых предложений по сайту: [email protected]