Заземление своими руками! Какую систему заземления выбрать: TT, TN-S, TN-C-S, TN-C?
В популярной за городом системе ТТ нейтральный провод N полностью изолирован от кабеля заземления РЕ, к которому подключают корпуса электрических приборов. Нейтраль нигде не должна пересекаться с заземляющим контуром. Еще одна особенность схемы – заземление местное, на прилегающей территории. Возле здания, во дворе или на приусадебном участке. Отсюда проистекают достоинства и недостатки, влияющие на выбор системы.
К преимуществам относится полный контроль со стороны собственника, арендатора или другого лица, ответственного за недвижимость. Не приходится надеяться на добросовестную работу электриков, правильно заземливших контуры по пути к потребителю. Или неправильно, что становится причиной серьезных проблем.
Кроме нехватки совести у профессионалов, повреждение заземления часто возникает по иным причинам, особенно на больших расстояниях в сельской местности. Контакты отрывает ветер, возникает преждевременная коррозия, трактора случайно задевают столбы.
Металлисты ищут металлолом, где только возможно, вандалы развлекаются рубкой проводов внизу на опорах. Больше всего проблем при воздушном расположении оголенной проводки, самом популярном в настоящее время.
Подземная надежнее, но ее ремонт иногда превращается в титанические раскопки, и затягивается надолго.
Главный недостаток системы заземления ТТ – владелец недвижимого имущества должен самостоятельно обеспечить соответствие нормативам или пригласить толкового специалиста. На практике это бывает трудно сделать. Нередко монтажом занимаются случайные люди с примитивными подручными инструментами.
Система ТТ используется при подключении к электросети следующих объектов:
- небольших частных домов и дач;
- мобильных сооружений – вагончиков, ларьков, бытовок;
- малых населенных пунктов, удаленных от трансформаторных станций.
Само собой, нет другого выбора, если электропитание идет от местного генератора, будь то дизель, солнечные батареи, ветряк или вращаемое потоком воды колесо.
Как правило, провод РЕ обводят внутри вокруг постройки, попутно к нему подсоединяют отводы к розеткам. Желательно сделать замкнутое кольцо, тогда при разрыве в одном месте все части продолжают функционировать.
Затем выводят через электрощит наружу, попутно подсоединив выключатель-автомат. Автоматика должна быть качественной, проверенной на практике. Кабель заземляют с помощью вкопанных круглых штырей с металлическими пластинами на концах.
Применяют стержни диаметром не менее 14 мм (один или несколько), в том числе удобные модульные штыри.
Отраслевые авторитеты указывают в нормативах множество обязательных и желаемых параметров заземляющей сети, которые могут со временем изменяться. Это диаметр проводов, материалы для изготовления проводки, размеры подземной части, глубина вкапывания, близость к фундаменту здания и надземным сооружениям.
Регулируется нормами сопротивление уходящих под землю проводников, и минимальная сила тока, при которой должен срабатывать автоматический выключатель. Срабатывание происходит при коротком замыкании, когда фаза попадает на корпус прибора.
За точной и актуальной информацией следует обратиться к специальной литературе, навести справки онлайн или проконсультироваться у квалифицированного электрика.
Не так давно ТТ-заземление вообще было запрещено в России. Вахтовики и дачники монтировали его незаконно. Строителям крупных коттеджей с удобствами и инженерными коммуникациями было труднее нарушать закон.
Теперь претензии государства смягчились, но лучше ознакомиться со всеми юридическими нюансами. По крайней мере, монтируя заземление своими руками Вы будете знать, на что рассчитывать в случае какой-либо проверки.
Пока что официально использование ТТ-системы разрешено, если нельзя заземлить по одному из вариантов TN.
Детальное изучение темы «Система заземления TT» представляем в следующей статье: Система заземления TT! В каких случаях использовать систему заземления TT?!
TN-S
Это самая сложная и дорогая заземляющая система. Необходима прокладка 5-жильного (3 фазы) или 3-жильного (1 фаза) провода от трансформаторной подстанции. Сделать такое заземление своими руками нереально, пусть им занимаются профессиональные электрики. В крайнем случае, можно пригласить специалиста, и оказать ему посильную помощь при монтаже, немного снизив цену на услуги.
В России нет строгих обязательств по переходу на TN-S. Данную схему рекомендует Ростехнадзор наряду с TN-C-S, но какой именно вариант использовать, решает потребитель. В Европе TN-S используется давно и повсеместно, более 40 лет. Поэтому европейцам проще подключить новый объект поблизости от уже работающего трансформатора.
Еще один нюанс – кабель необходимо проложить без случайных ошибок и преднамеренных нарушений. В частности, качественно заземлить его на подстанции. С этим у жилищных, строительных и коммунальных организаций редко бывает полный порядок.
Некоторые хозяйства откровенно мошенничают: соединяют провода N и PE где-то у входа в здание. Затем выдают получившуюся систему TN-C-S за TN-S, прописанную в документах.
В таких условиях просто нет смысла заказывать TN-S-заземление со значительной переплатой за услуги. Разве что заказчик может проконтролировать весь процесс монтажа или монтирует электросеть самостоятельно.
Фактически это осуществимо на предприятиях, которые располагают собственными бригадами электриков, закупают кабели оптом целыми бухтами.
При правильном исполнении TN-S-система чрезвычайно надежная и безопасная. Заземление и нейтраль разделены еще где-то далеко от потребителя, качество каждого канала теоретически очень высокое. На электрощите установлены два отдельных автомата для выходящих линий.
Количество входящих автовыключателей зависит от числа подключенных фаз. При покупке и установке оборудования необходимо учитывать максимальное напряжение.
По фактически сложившимся стандартам, трехфазные производственные сети работают под напряжением 380 В, однофазные бытовые (жилые, офисные) рассчитаны на 220 В.
3-жильные и 5-жильные кабели четко маркируются с помощью цвета оболочки (оплетки) проводников, цветовых сочетаний или цифро-буквенных обозначений. Не допускается произвольное использование жил. Предназначенные для заземления и нейтрали надо подключать только к соответствующим автоматам и контактам розеток.
Раскрыть все оссобенности использования самой сложной «системы заземления TN-S» мы попытаемя в другой статье, посвященной только теме: Система заземления TN-S! В каких случаях использовать систему заземления TN-S?!
TN-C
Схема популярна в старых многоэтажках и частных домах, является давним советским стандартом. В розетке только 2 гнезда, настоящего заземления нет. «Сделано в СССР» отличается от евростандарта лишь толщиной штырей и шириной гнезд, из-за чего возникает чисто механическая несовместимость.
Электропроводящие корпуса приборов иногда подключают к нулевому проводу (нейтрали). Если на корпусе случайно окажется фаза, произойдет короткое замыкание со срабатыванием автомата или перегоранием плавкого предохранителя. Это действенная, но неудобная защита.
Достаточно выйти из строя одному электроприбору, как отключенными от электричества оказываются все остальные. Чтобы избежать всеобщего отключения, можно установить несколько раздельных автовыключателей на электрическом щите.
Особенное внимание уделяют мощным (холодильник, стиральная машина), новым с умной электроникой и специальным (лабораторное оборудование).
Для включения штекеров с тремя плоскими штырьками применяют переходники, которые решают лишь проблему механической совместимости. Заземляющий конец вилки входит в слепое пластиковое гнездо, где соприкасается только с изолятором, контакта с проводниками нет.
Категорически не следует что-либо переделывать в переходнике или удлинителе, даже сопровождая изменения предупреждающими надписями. В частности, соединять нулевой провод с заземляющим. При практическом использовании это чревато быстрым возникновением короткого замыкания.
Или, казалось бы, выключенный электроприбор «бьет током», если вилка питания оставлена в розетке.
TN-C-система разрешена в старом жилом фонде. Если Вы купили городскую квартиру или дом в деревне, где надо обновить проводку, и думаете, какую систему заземления выбрать, можно оставить прежнюю схему. Так будет проще и дешевле, при отсутствии приборов, особо чувствительных к качеству заземления. Достаточно купить новые кабели, розетки, выключатели и автоматы вместо изношенных. Затем установить в точности, как были установлены прежние, что легко сделать собственными руками.
Также TN-C-заземление, или фактически его отсутствие, часто устраивают нелегально. Это касается временных построек и мест, удаленных от цивилизации.
Если в таежном поселке работает дизель-генератор, никаких проверок с большой земли не предвидится, то удобство с экономией выходят на первый план. Скорее всего, за пару месяцев не произойдут серьезные неприятности по причине плохого заземления.
Но осторожность требуется. Оставлять сторожа полезно не только на случай посещения поселка медведем, пожары среди тайги случаются даже чаще.
Более подробно тему «Система заземления TN-C» мы раскрываем в следующей статье: Система заземления TN-C! В каких случаях использовать систему заземления TN-C?!
TN-C-S
Рекомендуется для новых капитальных построек, где фактически нет других вариантов, какую систему заземления выбрать. Единственная альтернатива, согласно рекомендациям Ростехнадзора – это более дорогая и сложная система TN-S, монтаж которой не всякая организация сможет выполнить, тем более без нарушений. Любая проверка со стороны электриков или пожарников одобрит выбор TN-C-S.
Технические нюансы хорошо знакомы специалистам, которые теперь постоянно монтируют подобные схемы. На электрощите при вводе в здание объединяют нулевой провод и заземление. В розетке 3 гнезда, безопасность максимальная.
Нейтраль N и земля PE входят в каждую комнату уже разделенными. Если необходимо подключить старый электроприбор без заземленного корпуса, вилкой с двумя контактами, применяют переходник.
Третий контакт переходника входит в гнездо розетки, но не имеет продолжения, внутри не соединен с остальными. Пусть таким и остается.
В многоэтажках входной электрощит общественный, владелец каждой квартиры не имеет права что-либо там делать. За электроснабжение, обслуживание и ремонт отвечает жилищная организация.
Но при поселении в новое жилье, будь оно собственное или арендованное, стоит проконтролировать наличие двух отдельных каналов на квартирном щитке. В новостройке желательно также проверить срабатывание дифавтоматов на нейтрали и заземлении.
При выявлении любых нарушений следует сразу предъявить претензии, не ожидая, когда виноватыми сделают уже самих жильцов.
Строительство частного коттеджа налагает больше обязанностей на хозяев. Они отвечают за качество и состояние всей электросети, начиная от места подключения к общей линии. Проверки непременно будут, поэтому лучше заранее позаботиться о своем хозяйстве.
Найти хорошего электрика, который правильно установит электрощиток, подключит кабели и бытовые приборы. Редкий хозяин сможет самостоятельно выполнить работы от «А» до «Я». Но поучиться у мастера полезно. Тогда в случае срочного ремонта не придется вызывать профессионала за солидные деньги.
К тому же аварии чаще случаются ночью или на выходных.
Чем хороша TN-C-S-система, так это тем, что не нужно монтировать локальное заземление со вкапыванием металла в землю. Два провода, нейтральный и заземляющий, просто соединяются на щитке. Требования соблюдены, и расходы на установку минимальные. Проложить 3-проводный кабель только в пределах дома намного выгоднее, чем тянуть его от трансформаторной будки. Поэтому практически все потребители электроэнергии предпочитают TN-C-S-заземление вместо сомнительного TN-S.
Подробнее изучить «систему заземления TN-C-S» Вы можете в другой статье: Система заземления TN-C-S! В каких случаях использовать систему заземления TN-C-S?!
Конечно, заземление корпуса – это во многом перестраховка. Реально оно требуется лишь для некоторых моделей лабораторной техники. Подавляющее большинство бытовых электроприборов прекрасно работает по двухконтактной схеме TN-C.
Источник: https://380torg.ru/articles/405808
Системы защитного заземления
Защитное заземление — это электрическое соединение с землей (ее эквивалентом) металлических нетоковедущих частей, которые могут оказаться под напряжением.
Соответственно, при пробое изоляции токоведущего провода на корпус заземленного электроприбора ток будет проходить по заземляющему проводнику (PE), что исключит поражение электрическим током человека.
Цели заземления: защитное заземления служит исключительно для защиты людей от поражения электрическим током.
Условные обозначения систем расшифровываются следующим образом
- Для электроустановок напряжением до 1 кВ (в отношении применяемых систем заземления) приняты следующие обозначения:
- система TN — система, в которой нейтраль источника питания глухо заземлена, а открытые проводящие части электроустановки присоединены к глухозаземленной нейтрали источника посредством нулевых защитных проводников
- система TN-С — система TN, в которой нулевой защитный и нулевой рабочий проводники совмещены в одном проводнике на всем ее протяжении
- система ТN-S — система TN, в которой нулевой защитный и нулевой рабочий проводники разделены на всем ее протяжении
- система TN-С-S — система TN, в которой функции нулевого защитного и нулевого рабочего проводников совмещены в одном проводнике в какой-то ее части, начиная от источника питания
- система IT — система, в которой нейтраль источника питания изолирована от земли или заземлена через приборы или устройства, имеющие большое сопротивление, а открытые проводящие части заземлены
- система TT — система, в которой нейтраль источника питания глухо заземлена, а открытые проводящие части электроустановки заземлены при помощи заземляющего устройства, электрически независимого от глухозаземленной нейтрали источника
- Первая буква — состояние нейтрали источника относительно земли:
- Т — заземленная нейтраль
- I — изолированная нейтраль
- Вторая буква — состояние открытых проводящих частей относительно земли:
- Т — открытые проводящие части заземлены независимо от отношения к земле нейтрали источника питания или какой-либо точки питающей сети;
- N — открытые проводящие части присоединены к глухозаземленной нейтрали источника питания.
- Последующие (после буквы N) буквы — совмещение в одном проводнике или разделение функций нулевого рабочего и нулевого защитного проводников:
- S — нулевой рабочий (N) и нулевой защитный (РЕ) проводники разделены;
- С — функции нулевого защитного и нулевого рабочего проводников совмещены в одном проводнике (РЕN-проводник).
Схема заземления TN-C-S
В системе заземления ТN-С-S во вводно-распределительном устройстве электроустановки совмещенный нулевой защитный и нулевой рабочий проводник РЕN разделен на нулевой защитный РЕ и нулевой рабочий N проводники.
Наиболее перспективной для нашей страны является система заземления ТN-С-S, позволяющая в комплексе с широким внедрением УЗО обеспечить высокий уровень электробезопасности в электроустановках без их коренной реконструкции.
Схема заземления IT
» Вернуться в раздел: Справочная
Источник: http://www.mos-invertor.ru/spr2.html
Системы заземления
Заземление является одним из основных факторов обеспечивающих защиту от поражения электрическим током. В соответствии с главой 1.7 ПУЭ все системы заземления электроустановок можно разделить на две группы:
Первая буква аббревиатуры указывает на характер заземления источника питания, а вторая — на характер заземления открытых проводящих частей электроприемника:
- T (от франц. terre — земля) — заземлено;
- N (от франц. neutre — нейтраль) — соединение с нейтралью источника питания (зануление);
- I (от франц. isolé — изолированный) — изолировано от заземления.
Так же в статье встречаются следующие аббревиатуры:
- N — функциональный (рабочий) ноль — нулевой проводник используемый для подключения электроприемника.
- PE — защитный ноль — защитный проводник предназначенный для заземления корпусов электрооборудования.
- PEN — проводник совмещающий функции нулевого защитного и нулевого рабочего проводников.
Теперь подробно разберем перечисленные типы систем заземления.
2. Система заземления TN
Система TN — это система, в которой нейтраль источника питания глухо заземлена, а открытые проводящие части электроустановки присоединены к глухозаземленной нейтрали источника питания посредством нулевых защитных проводников (п.1.7.3. ПУЭ).
Как уже было написано выше система TN подразделяется на следующие системы (подсистемы): TN-C, TN-C-S, TN-S.
2.1 Система заземления TN-C
Система TN-C — это система TN, в которой нулевой защитный и нулевой рабочий проводники совмещены в одном проводнике на всем ее протяжении. То есть при данной системе применяется общий PEN-проводник который используется как для подключения электроприемников так и для зануления их открытых проводящих частей (корпусов).
Система заземления TN-C схема:
Как видно на схеме при данной системе выполняется зануление токопроводящих корпусов электрооборудования, это необходимо для того, что бы при замыкании фазного провода на корпус электроприемника, вследствие его обрыва или повреждения изоляции, произошло короткое замыкание которое, в свою очередь, привело бы к срабатыванию защитной аппаратуры (автоматического выключателя) и отключению напряжения.
Главным недостатком системы TN-C является утеря ее защитных функций в случае отгорания (обрыва) PEN-проводника, при этом на зануленном корпусе электрооборудования может возникнуть опасный для жизни электрический потенциал.
Из-за недостаточной степени защиты в настоящее время данная система не применяется, однако она все еще встречается в зданиях старой постройки. При реконструкции старых зданий система заземления TN-C заменяется на систему TN-C-S или TN-S.
2.2 Система заземления TN-C-S
Система TN-C-S — это система TN, в которой функции нулевого защитного и нулевого рабочего проводников совмещены в одном проводнике в какой-то ее части, начиная от источника питания. Другими словами при данной системе имеется PEN-проводник который, в определенной части этой системы, разделяется на нулевой рабочий (N-проводник) и нулевой защитный (PE-проводник).
Согласно пункту 1.7.135 ПУЭ В месте разделения PEN-проводника на нулевой защитный (PE) и нулевой рабочий (N) проводники необходимо предусмотреть отдельные зажимы или шины для проводников, соединенные между собой. PEN-проводник питающей линии должен быть подключен к зажиму или шине нулевого защитного РЕ-проводника.
Таким образом схема системы заземления TN-C-S будет иметь следующий вид:
Примечание: перемычка между шинами должна иметь сечение не менее сечения PEN-проводника.
Данная система более надежна и обеспечивает более высоки уровень электробезопасности чем система TN-C, кроме того система TN-C-S обеспечивает защиту от обрыва нуля, а ее устройство обходится немногим дороже системы системы TN-C.
Однако эта система так же имеет существенный недостаток — при повреждении PEN проводника на участке сети между источником питания и зданием на всех корпусах электрооборудования соединенных с PE проводником появится опасный для жизни электрический потенциал.
Для предотвращения такого развития событий при системе TN-C-S выполняется повторное заземление PEN проводника, как показано на схеме.
Благодаря невысокой стоимости устройства системы TN-C-S и ее хорошими защитными характеристиками в настоящее время эта система получила наиболее широкое применение.
Подробную инструкцию по устройству заземления в частном доме по системе TN-C-S вы можете посмотреть здесь.
2.3 Система заземления TN-S
Система TN-S — это система TN, в которой нулевой защитный и нулевой рабочий проводники разделены на всем ее протяжении.
Система заземления TN-S схема:
Данная система обеспечивает высокий уровень безопасности, т.к. при ней исключена возможность возникновения опасного электрического потенциала на корпусах электрооборудования при повреждении питающей линии.
Однако система TN-S не получила широкого распространения ввиду своего главного недостатка — высокой стоимости, которая обусловлена необходимостью выполнения подключения электроустановок потребителей к источнику питания пятью проводами при трехфазном подключении либо тремя проводами при однофазном подключении, при этом отечественная энергетика ориентирована на четырехпроводные схемы трехфазного электроснабжения, это значит, что при решении выполнить подключение по системе TN-S присоединение к существующим сетям электроснабжения будет невозможно, для такого подключения необходимо будет вести отдельную пятипроводную линию от источника питания (трансформаторной подстанции).
3. Система заземления TT
Система ТТ — это система, в которой нейтраль источника питания глухо заземлена, а открытые проводящие части электроустановки заземлены при помощи заземляющего устройства, электрически независимого от глухозаземленной нейтрали источника.
Система заземления TT схема:
В соответствии с пунктом 1.7.59. ПУЭ питание электроустановок по системе ТТ, допускается только в тех случаях, когда условия электробезопасности в системе TNне могут быть обеспечены. Кроме того в таких электроустановках должно быть выполнено автоматическое отключение питания с обязательным применением УЗО. При этом должно быть соблюдено условие:
Rа Iа ≤ 50 В,
где Iа — ток срабатывания защитного устройства; Ra — суммарное сопротивление заземлителя и заземляющего проводника, при применении УЗО для защиты нескольких электроприемников — заземляющего проводника наиболее удаленного электроприемника.
4. Система заземления IT
Система IT — система, в которой нейтраль источника питания изолирована от земли или заземлена через приборы или устройства, имеющие большое сопротивление, а открытые проводящие части электроустановки заземлены.
Система заземления IT схема:
Система IT применяется, как правило, в электроустановках специального назначения, к которым предъявляются повышенные требования безопасности, например лаборатории, угольные шахты, также может применяться в больницах для аварийного электроснабжения и освещения и т.п
Была ли Вам полезна данная статья? Или может быть у Вас остались вопросы? Пишите в комментариях!
Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.
Источник: https://elektroshkola.ru/zazemlenie/sistemy-zazemleniya/
Система заземления TN-S
Здравствуйте, дорогие гости сайта заметки электрика.
Уже изучив, системы заземления TN-C и TN-C-S, сегодня Вашему вниманию я представляю систему заземления TN-S.
Когда же появилась система заземления TN-S?
Давайте немного вернемся в прошлое. История возникновения системы заземления TN-S лежит в далеко 1940-ых годах прошлого столетия. Такую систему впервые стали применять в странах Европы и продолжают применять по сей день.
Как я уже говорил, аналогичная задача стоит и у России.
При проектировании и электромонтаже новых объектов необходимо использовать для однофазных сетей потребителей — трехжильные кабельные линии (фаза, N, PE), а для трехфазных сетей — пятижильные кабельные линии (А,В,С, N, PE) с самого источника электроэнергии, и заканчивая, электрической точкой (розетка) непосредственно у потребителя.
Эти требования взяты не из головы — необходимые рекомендации по переходу из системы TN-C в систему TN-S или TN-C-S обуславливается таким нормативным документом, как ПУЭ (пункт 1.7.132).
Почему же сразу нельзя перейти на систему заземления TN-S?
Да потому, что это процесс очень затратный и дорогостоящий.
Принцип исполнения системы TN-S
Чем же система TN-S отличается от других систем заземления?
Принцип системы заземления TN-S основан на том, что нулевой рабочий проводник N и защитный проводник PE приходят к потребителю отдельными жилами с питающей трансформаторной подстанции (ТП), в отличии от системы TN-C-S, где эти проводники разделялись в определенном месте, например в ВРУ на вводе в жилой дом.
Наглядное представление системы заземления TN-S
В данной системе повторного заземления не требуется, т.к. на трансформаторной подстанции имеется основной заземлитель.
Достоинства системы TN-S
Система TN-S — самая надежная и безопасная система заземления, которая максимально осуществляет защиту электрооборудования, и самое главное, человека от поражения электрическим током с помощью применения в схемах УЗО и диффавтоматов, а также системы уравнивания потенциалов (СУП).
Еще один плюс этой системы — это отсутствие высокочастотных наводок (от электроприборов таких как, электрическая бритва, пылесос, перфоратор) и других помех на силовые линии потребителей.
Система TN-S не требует контроля за состоянием контура заземления, потому как нет в этом необходимости.
Недостатки системы заземления TN-S
Я считаю, что единственным недостатком этой системы является дорогостоящий монтаж электропроводки по причине наличия силовых кабелей (проводов) с большим числом жил.
В следующей статье читайте про систему заземления TT.
Источник: http://zametkielectrika.ru/sistema-zazemleniya-tn-s/
Что представляет собой система заземления TN-C-S
По сей день в эпоху стремительного роста научно-технического прогресса и внедрения в нашу жизнь суперпродвинутых инноваций основная масса населения пользуется устаревшей системой заземления электрических сетей TN-C.
Времена, когда среднестатистический российский пользователь с недоумением рассматривал трехштекерную вилку зарубежных бытовых электроприборов, ставших в одночасье доступными для всеобщего приобретения, конечно, уже прошли. Но, к сожалению, до сей поры полной ясности в том, для чего, так называемая, евровилка укомплектована третьим штекером, у большинства еще нет.
Для того чтобы окончательно решить этот вопрос, необходимо разобраться с существующими вариантами защиты электрических сетей, а также подробно рассмотреть, что такое система заземления TN-C-S. Описание упомянутого варианта защиты, а также его плюсы и минусы мы предоставили ниже.
Существующие системы заземления
В Российской Федерации в электросетях обслуживающих жилой фонд применяются следующие типы систем заземления:
TN-C. Устаревшая, но самая распространенная система. Львиная доля частного сектора и устаревшего жилого фонда многоквартирных домов пользуется данным типом электроснабжения.
При системе TN-C заземляющий контур обустроен на трансформаторной понижающей подстанции, обслуживающую дом или улицу, нулевая точка трансформатора наглухо заземлена. Проводник, подключенный к нулевой точке PEN, подается в жилье и выполняет функции нулевого рабочего N и защитного провода PE.
В связи с тем, что TN-C наиболее проста и экономична, она в полной мере не отвечает требованиям электробезопасности.
TN-S. В этом случае нулевой PN и защитный PE проводники выполнены раздельно. Данный тип защиты в полной мере обеспечивает мероприятия безопасности от поражения электрическим током, поэтому при организации электроснабжения новых микрорайонов используют именно систему TN-S.
Системы TT и IT используются в специальных условиях, о них мы поговорим в отдельных статьях. Сейчас же более подробно рассмотрим плюсы и минусы, а так же что собой представляет система TN-C-S.
Описание схемы электроснабжения TN-C-S
Перевод энергоснабжения жилого фонда, с системы TN-C на TN-S в настоящее время не реален, потому что потребует колоссальных затрат на модернизацию. Для обеспечения соответствующих норм электробезопасности оптимальным вариантом будет использование системы TN-C-S, которая является комбинацией TN-C и TN-S.
Смысл ее заключается в том, что от подстанции до вводного распределительного устройства (ВРУ) дома или коттеджа электроснабжение осуществляется с использованием одного проводника PEN. В водных распределительных устройствах (ВРУ) подъездов или частных домов, оборудованных повторным заземлением, происходит разделение PEN на нулевой PN и защитный проводник PE.
Согласно схеме предоставленной ниже, при заземлении типа TN-C-S к клеммам потребителей трехфазной нагрузки подводится 4 проводника, 3 из которых являются фазными проводами А, В, С, а четвертый – нейтральным проводом PN.
Защитный провод PE выполнен в виде перемычки между металлическим корпусом электроприбора и заземляющим контуром. Подключение потребителя к однофазной сети осуществляется одним фазным проводом и нейтралью PN с последующим заземлением корпуса выполненного из металла.
Схема разделения проводника PEN в ВРУ:
Очень важно соблюсти необходимую величину сечения заземляющего проводника между заземляющим контуром и шиной заземляющего контура дома. Согласно п. 1.7.117 (см. Главу 1.7), заземляющий проводник, присоединяющий заземлитель рабочего (функционального) заземления к главной заземляющей шине в электроустановках напряжением до 1 кВ, должен иметь сечение не менее: медный — 10 мм2, алюминиевый — 16 мм2, стальной — 75 мм2.
Как сделать заземляющий контур
В многоквартирных домах мероприятиями по переходу на систему заземления TN-C-S, как правило, занимаются специализированные предприятия. Они производят соответствующие переключения в ВРУ дома или подъезда и обустраивают дополнительный заземляющий контур.
Практика показывают, что бывают случаи, когда безграмотные в вопросах электротехники, но не в меру активные жильцы, пытаются совершить модернизацию схемы электроснабжения для своей отдельно взятой квартиры самостоятельно. Для этой цели в качестве заземляющего контура они пытаются использовать стояки водопровода или теплоснабжения, что категорически запрещено, т.к.
данный способ неизбежно приводит к электротравматизму и оказывает пагубное воздействие на срок службы трубопроводов и приборов отопления.
https://www.youtube.com/watch?v=RTH_d0DgBoY
Для условий частного дома изготовить дополнительное заземление не сложно, самой популярной и надежной является замкнутая схема в виде треугольника:
Электрод, погруженный в землю – уголковая сталь, перемычка – стальная полоса, заземляющий проводник – стальной прут. Более подробно о том, как сделать заземление в доме, мы рассказывали в отдельной статье!
Преимущества и недостатки TN-C-S
Заземление типа TN-C-S, как и другие системы имеет свои плюсы и минусы. К значительным ее преимуществом можно отнести простоту и экономичность, способность обеспечить должный уровень электробезопасности. Серьезным недостатком TN-C-S является то, что при обрыве проводника PEN на участке до его разделения проводник PE, а также все заземленные металлические корпуса электроприборов будут находиться под напряжением.
Напоследок рекомендуем просмотреть полезные видео по теме:
Вот мы и предоставили описание системы заземления TN-C-S. Надеемся, благодаря схемам и видео вам стало понятно, что собой представляет данный вариант электроснабжения и как его организовать своими руками.
Будет интересно прочитать:
Источник: https://samelectrik.ru/sistema-zazemleniya-tn-c-s.html
Системы заземлений: TN-С, TN-C-S, TN-S, ТТ, IT
Глобализация не обошла стороной электротехнику, МЭК (Международная электротехническая компания) разработала единый стандарт, по которой квалифицируются системы заземлений.
Разновидности систем заземлений
Можно выделить следующие три системы, а также еще три подсистемы заземлений:
- Система TN: подсистемы TN-C, TN-S, TN-C-S.
- Система ТТ.
- Система IT.
Международная классификация систем заземлений обозначается заглавными буквами. Первая буква указывает на характер ЗАЗЕМЛЕНИЯ ИСТОЧНИКА ПИТАНИЯ , вторая – на характер ЗАЗЕМЛЕНИЯ ОТКРЫТЫХ ЧАСТЕЙ ЭЛЕКТРОУСТАНОВКИ.
Какая из систем надежно защищает?
Аббревиатура букв расшифровывается так:
- T (terre — земля) — заземлено;
- N (neuter — нейтраль) — присоединено к нейтрали источника (занулено);
- I (isole) — изолировано.
В ГОСТ введены обозначения нулевых проводников:
- N — нулевой рабочий проводник;
- PE — нулевой защитный проводник;
- PEN — совмещенный нулевой рабочий и защитный проводник заземления.
Целевые предназначения систем заземления
Разновидности систем заземлений
Предлагаю по порядку разобрать каждую систему и подсистему для того, чтобы лучше понять, как они работают и для чего они нужны.
Система TN – система в которой нейтраль источника питания глухо заземлена, а открытые проводящие части электропроводки присоеденены к глухозаземленной нейтрали источника посредством нулевых защитных проводников.
Термин глухозаземленная означает, что проводник N (нейтраль) присоединен не к дугогасящему реактору, а к заземляющему контуру, который непосредственно смонтирован вблизи трансформаторной подстанции.
Система TN: подсистема TN-C
TN—C — нулевой рабочий и нулевой защитный проводники объединены в одном проводнике по всей системе (C — combined — объединённый).
- Достоинства подсистемы TN-C.
Наиболее распространенная подсистема, экономичная и простая.
- Недостатки подсистемы TN-C
У такой системы нет отдельного проводника РЕ (защитное заземление). Это означает, что в жилом доме в розетках отсутствует заземление. Нередко при такой системе делается зануление. Зануление — это крайняя мера, рассчитанная на эффект короткого замыкания. Если проводник фазы окажется на корпусе прибора, произойдет короткое замыкание (КЗ), в итоге, сработает автоматический выключатель на отключение.
При такой системе TN-C недопустимо уравнивание потенциалов в ванной комнате.
Cистема заземления TN-C используется в старом жилом фонде и не может быть рекомендована для новых построек.
Схема системы TN-C
Cхема системы TN-C
Система TN: подсистема TN-S
TN—S — нулевой рабочий и нулевой защитный проводники работают раздельно по всей системе (S — separated — раздельный).
- Достоинства подсистемы TN-S.
Наиболее современная и безопасная система заземления. Рекомендуется при строительстве новых зданий. Способствует хорошей защите человека, оборудования, а так же защиты зданий.
- Недостатки подсистемы TN-S.
Менее распространена. Требует прокладки от трансформаторной подстанции пятижильного провода в трехфазной сети или трехжильного кабеля в однофазной сети, что ведет к удорожанию проекта.
Cхема системы TN-S
Схема системы TN-S
Система TN: подсистема TN-C-S
TN-C-S — нулевой рабочий и нулевой защитный проводники объединены в одном проводнике в какой- то ее части, начиная от источника питания до ввода в здание, такую систему возможно расщепить на проводник N и проводник РЕ. После расщепления такая система требует повторного заземления
- Достоинства подсистемы TN-С-S.
Подсистема TN-C-S рекомендована для широкого применения . Технически достаточно легко выполнима. При переходе с подсистемы TN-C требует несложной модернизации.
- Недостатки подсистемы TN-С-S.
Нуждается в модернизации стояков в подъездах. При обрыве PEN проводника электроприборы могут оказаться под опасным потенциалом.
Схема системы TN-C-S
Схема системы TN-C-S
Система TT
TT — нейтраль источника глухо заземлена, а открытые проводящие части электроустановки присоединены к заземлителю, электрически независимому от заземлителя нейтрали источника питания.
До недавнего времени система заземления ТТ была запрещена в нашей стране. Сегодня, эта система остается достаточно востребованной и используется для мобильных зданий, таких как вагончики, ларьки, павильоны,дома и др. Допускается только в тех случаях, когда условия электробезопасности в системе TN не могут быть обеспечены.
Такая система требует высококачественного повторного заземления, с высокими требованиями к сопротивлению. Самым эффективным заземлением в этом случае, является модульно-штыревое заземление. Во всех перечисленных системах рекомендуется для безопасности применять УЗО ( Устройство защитного отключения).
Схема системы ТТ
Cхема системы ТТ
Система IT
Cистема IT — в такой системе нейтраль источника питания изолирована от земли или заземлена через приборы или устройства, имеющие большое сопротивление, а открытые проводящие части электроустановки заземлены.
Система IT – это схема заземления лабораторий и медицинских учреждений, в которой проводятся опыты и работы с чувствительной аппаратурой. А все токи и электромагнитные поля сведены к минимуму.
Схема системы IT
схема система IT
Как подготовится к электромонтажным работам в доме или офисе?
Источник: http://electric-tolk.ru/sistemy-zazemleniya-tn-s-tn-c-s-tn-s-tt-it/
Системы защитного заземления TNC, TNCS, TNS, TT, IT
Стандарт Стандарт ПУЭ 1.7, EN60950, IEC60364
Схемы электроснабжения нагрузки TNC, TNCS, TNS, TT, IT
TNC – Нейтраль и PE («земля») объединены вместе везде в системе в единую щину PEN.
Neutral and PE (protected earth conductor) are combined throughout the system.
TNS – Нейтраль соединена с землёй трансформатора, но не соединена с землёй (PE) где-нибудь ещё в системе. PE приходит на объект от трансформатора отдельно и может быть соединена с местной землёй.
Neutral is earthed at the transformer but is not bonded to earth or the PE elsewhere. PE is carried to the site from the transformer and bonded to site earth.
TNCS – Общая в начале шина PEN затем разъеделяется на 2 отдельных проводника: N (нейтраль) и PE (защищённую шину земли). Стандарт США – разновидность данного. Нейтраль заземлена на трансформаторе.
TNCS splits the combined PEN into a separate neutral and PE at service entry (U.S. practice is a variation of this). The neutral is earthed at the transformer.
TT – Нейтраль заземлена на трансформаторе. Местная Земля – PE (объект-потребитель) не связана с нейтралью. Между землёй трансформатора и землёй потребителя (PE) соединений нет.
Neutral is earthed at the transformer. The PE originates at site but is not bonded to the neutral. There is no interconnection between PE and transformer earth.
IT – Нейтраль трансформатора не заземлена (или заземлена через сопротивление с высоким импедансом).
The transformer is unearthed (or earthed through high impedance). The PE originates at site but is not bonded to a service conductor; no conductor in this system is designated as ‘neutral’ (standard IT system).
Разновидности IT системы:
- A) проводник «N / Нейтраль» отсутствует в системе (стандартная счистема IT).
- B) проводник «N / Нейтраль» есть в системе.
Нейтраль на потребителе также не заземлена (или заземлена через сопротивление с высоким импедансом).
Для обоих случаев возможны разновидности:
- I) Местная Земля – PE (объект-потребитель) отсутствует. Потребитель использует PE от трансформатора.
- II) Местная Земля – PE (объект-потребитель) есть. Потребитель может использовать местную Землю или Землю трансформатора. Эти Земли могут быть как соединены так и не соединены.
Главное требование системы IT – незаземлённая или импедансно-заземлённая нейтраль трансформатора.
Термины / сокращения:
- T – Terra / Земля (лат. terra, франц. terre)
- N – Neutral / Нейтраль
- C – Combined / Совмещённый
- S – Separated / Отдельный
- I – Isolated / Изолированный (франц. terre isolee)
- PE – Protected Earth conductor / Защищённая шина Земли
- PEN – Protected Earth + Neutral conductor / единая шина объединяющая Нейтраль (N) и Землю (PE)
Различные стандарты СИСТЕМ ЗАЗЕМЛЕНИЯ
Трём системам заземления дан официальный статус посредством стандарта (IEC 60364) который подразделяется на большое число национальных стандартов.
Системы TN
Основные принципы схемы TN:
- Нейтраль трансформатора заземлена, поэтому корпуса нагрузок (подключенные к заземлению PE или PEN трансформатора) оказываются гальванически соединены с нейтралью.
- Нагрузка не имеет местного заземления.
Существующие варианты схемы TN:
- TNC – «Земля» и нейтраль объединены в 1 проводнике (PEN) (C = Combined).
- TNS – «Земля» и нейтраль разъединены (PE и N) (S = Separate).
- TNCS = TNC+TNS Объединённые вначале «Земля» и нейтраль затем разъединяются (CS = Combined then Separate). То-есть TNC преобразуется в TNS.
Система TNS не может существовать перед системой TNC.
Система TNС (TN-C). Нарушение изоляции в системе TNC
Общие замечания:
В системе TNC, с защитными токовыми автоматами, нарушение изоляции опасно. Разрушение изоляции, то есть замыкание фазного проводника на «Землю» вызывает рост тока замыкания до максимального значения, ограниченного защитными автоматами в цепи.
Такая защита во многих случаях достаточна для защиты самой нагрузки, но не является полной, например если изоляция разрушена не полностью и ток фаза-«Земля» недостаточен для срабатывания защитного автомата. Однако этого может привести к возникновению пожара или для опасного поражения током человека, а защитный автомат при этом не сработает (не обеспечит защитное отключения аварийного участка цепи).
Cистема имеет самый низкий уровень безопасности так как УЗО корректно установить невозможно.
Несмотря на опасность система продолжает использоваться в России в т.ч. на госпредприятиях. В России в настоящий момент вытесняется системой TNS.
Подробные замечания:
Рис.1. Нарушение изоляции в системе TNC
Возможные варианты:
- Человек коснулся фазного проводника и «Земли» одновременно.
- При затоплении (пожаре и др.) изоляция провода разрушена и фаза замкнулась на корпус (на «Землю»).
- Изоляция старого провода разрушена и фаза замкнулась на корпус (на «Землю»).
Система TNS (TN-S). Нарушение изоляции в системе TNS
Общие замечания:
В системе TNS, с защитными токовыми автоматами, нарушение изоляции опасно. Разрушение изоляции, то есть замыкание фазного проводника на «Землю» вызывает рост тока замыкания до максимального значения, ограниченного защитными автоматами в цепи.
Такая защита во многих случаях достаточна для защиты самой нагрузки, но не является полной, например, если изоляция разрушена не полностью и ток фаза-«Земля» недостаточен для срабатывания защитного автомата. Тем не менее, этого тока может быть достаточно для возникновения пожара или для опасного поражения током человека, а защитный автомат при этом не сработает (не обеспечит защитное отключения аварийного участка цепи).
Максимальная степень безопасности может быть достигнута путём установки УЗО. Система является самой распространённой в мире. В России введена как стандарт.
Степень безопасности TNS выше чем TNC по следующим причинам (П1, П2):
- П1) защитные автоматы в TNS при срабатывании могут размыкать цепь полностью (как нейтраль так и фазы), защитная шина «Земли» PE продолжает при этом выполнять свои функции. В то время, как и в системе TNC при аварии могут быть разомкнуты только фазы.
- П2) Защитный проводник «Земля» PE выполняет только свои функции, то есть служит заземлением. В то время как в системе TNC защитный проводник выполняет сразу две функции: заземления и нейтрали, что может привести к проблемам, например: нагрузка (ПК) будет «зависать» от помех из-за некачественного заземления, так как на заземляющем проводнике возникают наводки (помехи), вызванные текущим по нему току нагрузки.
Подробные замечания:
Рис.2. Нарушение изоляции в системе TNS
Возможные варианты:
- Человек коснулся фазного проводника и Земли одновременно.
- При затоплении (пожаре и др.) изоляция провода разрушена и фаза замкнулась на корпус («Землю»).
- Изоляция старого провода разрушена и фаза замкнулась на корпус («Землю»).
Система TNСS (TN-C-S). Нарушение изоляции в системе TNСS
Общие замечания:
В системе TNS, с защитными токовыми автоматами, нарушение изоляции опасно. Разрушение изоляции, то есть замыкание фазного проводника на «Землю» вызывает рост тока замыкания до максимального значения, ограниченного защитными автоматами в цепи.
Такая защита во многих случаях достаточна для защиты самой нагрузки, но не является полной, например, если изоляция разрушена не полностью и ток фаза-«Земля» недостаточен для срабатывания защитного автомата. Тем не менее, этого тока может быть достаточно для возникновения пожара или для опасного поражения током человека, а защитный автомат при этом не сработает (не обеспечит защитное отключения аварийного участка цепи).
Система защиты имеет средний уровень безопасности, так как установив УЗО можно добиться достаточно высокой степени безопасности, но при этом остаётся проблема некачественного заземления из-за использования объединённой шины PEN.
Используется достаточно часто в России. В России в настоящий момент вытесняется системой TNS.
Подробные замечания:
Рис.3. Нарушение изоляции в системе TNCS
Возможные варианты:
- Человек коснулся фазного проводника и Земли одновременно.
- При затоплении (пожаре и др.) изоляция провода разрушена и фаза замкнулась на корпус («Землю»).
- Изоляция старого провода разрушена и фаза замкнулась на корпус («Землю»).
Нарушение изоляции в системе TT
Общие замечания:
Степень безопасности зависит от сопротивления между «Землей» трансформатора ТП и «Землей» потребителя. Если это сопротивление низкое, безопасность такая же как в TNS с УЗО. Если это сопротивление высокое, безопасность системы снижается, так как УЗО может не сработать.
Установка УЗО является общепринятой в системе TT. Данная система в России используется редко.
Подробные замечания:
Рис.4. Нарушение изоляции в системе TT
Возможные варианты:
- Человек коснулся фазного проводника и Земли одновременно.
- При затоплении (пожаре и др.) изоляция провода разрушена и фаза замкнулась на корпус («Землю»).
- Изоляция старого провода разрушена и фаза замкнулась на корпус («Землю»).
Показана стандартная схема ТТ с УЗО. Ток пробоя (нарушения) изоляции фазных проводов и нейтрального провода ограничен сопротивлением (импедансом) участка между «Землей» трансформатора и «Землей» потребителя.
Защита обеспечена Устройством защитного отключения (УЗО): повреждённый блок / участок отключается устройством УЗО как только порог тока ΔI УЗО помещённого перед данным блоком / участком будет превышен током утечки / пробоя изоляции (на землю) IL:
IL > ΔI
IL = UL / RL – ток пробоя / утечки / leakage
Условие надёжной работы УЗО:
R (CD)
Источник: https://www.xn--80aacyeau1asblh.xn--p1ai/reference/tech-articles/234-protection-systems
Описание системы заземления TN-S
Этот вид защитного заземления первоначально был внедрён в 30-х годах ХХ века в европейских странах, где уже более 50 лет является основным. Перед российскими электрокомпаниями сейчас ставится задача перевести на эту схему защиты всех потребителей.
Система заземления TN-S проектируется и устанавливается во всех новых кабельных и воздушных линиях, а так же при замене существующих сетей.
Для этого вместо четырёхжильного провода (A,B,C,PEN) на всём протяжении от трансформаторной подстанции до ввода в здание прокладывается пятижильный кабель (A,B,C,N,PE). В квартиру в этом случае ввод осуществляется трёхжильным проводом (L,N,PE).
Описание системы заземления TN-S имеется в ПУЭ п.1.7.132. В данной схеме нулевой защитный (N) и нулевой рабочий (PE) проводники не связаны между собой на всем протяжении. К потребителю от источника питания приходит три фазы, ноль и заземление, либо фаза, ноль, заземление (при однофазном питании).
Вместо заземления этого типа при реконструкции имеющихся сетей допускается монтаж более простой и дешёвой схемы TN-C-S.
Дело в том, что перевод существующих линий на схему TN-S обходится достаточно дорого. При этом требуется полная замена вводных кабелей с 4 жильных на 5 жильные или реконструкция всех столбов и прокладка дополнительного провода воздушной линии.
Информация! Любая система заземления, применяемая в жилом фонде, предусматривает подвод заземляющего проводника РЕ к квартире и разводку его по всем комнатам и розеткам.
Схема электроснабжения системы TN-S
Система заземления TN-S имеет ряд особенностей, отличающих её от защиты других типов:
- Нейтральный провод N отделён от заземляющего РЕ на всей длине. Этим она отличается от системы TN-C-S, в которой проводники объединены в линии от подстанции до вводного щита в доме. Единственное место их соединения — заземлённая средняя точка вторичных обмоток питающего трансформатора.
- Заземляющий провод во вводном щите допускается не заземлять. Вместо этого выполняется система уравнения потенциалов (СУП). Основным заземлителем является глухозаземлённая нейтраль трансформатора, в отличие от заземления TN-C-S, при котором в каждом здании необходимо иметь свой контур заземления, с которым соединяется место разделения PEN-проводника.
- При обрыве нейтрального провода в любой точке напряжение на корпусе электроприборов отсутствует. Благодаря этому система TN-S является лучшей защищитой потребителей от поражения электрическим током.
Подробно схема заземления TN-S и требования к ней описаны в ПУЭ п. 1.7.3 и показана там же, на рис. 1.7.2.
Название системы TN-S указывает на её основные конструктивные особенности:
- 1. T (terre — земля) — цепи электропитания заземлены;
- 2. N (neuter — нейтраль) — система соединена с нейтралью источника питания;
- 3. S (separated — раздельный) — нейтральный проводник N разделён с заземляющим РЕ.
В этой схеме защиты исключено попадание питающего напряжения на корпус оборудования. При отгорании нулевой клеммы в щите, обрыве нейтрали или отключении двухполюсного автоматического выключателя в однофазной сети провод РЕ остаётся соединённым с заземлением.
Отсутствие соединения с заземлением после вводного автомата позволяет использовать УЗО или дифференциальный автомат. Работа этих устройств основана на первом правиле Кирхгофа, согласно которому ток в нейтрали в трёхфазной сети равен алгебраической сумме токов всех фаз. В однофазной сети ток в нейтральном проводе равен току в фазном.
При нарушении изоляции или прикосновении человека к токоведущим частям это равенство нарушается и появляется ток утечки, что приводит к срабатыванию защиты. Его величина зависит от места установки и составляет 30-100мА.
Принцип работы системы заземления TN-S
Электрическая схема питания электроприборов, подключённых к системе TN-S, а аналогична обычной схеме электроснабжения, которая использовалась со времён Теслы и Эдисона. Отличие заключается в наличии дополнительного провода, соединяющего корпус оборудования со средней точкой вторичной обмотки трансформатора. Разделение нейтрали N и заземления РЕ позволяет исключить попадание высокого напряжения на непредназначенные для этого части электроприборов.
В системе заземления TN-S нейтраль трансформатора соединяется с заземляющими устройствами напрямую, без автоматов или рубильников. Такая нейтраль называется «глухозаземлённой».
Согласно ГОСТ Р 50571.1-2009 п.312.2.1.1, заземлять проводник РЕ в дальнейшем нет необходимости. Однако при монтаже этой схемы следует учесть требования ПУЭ п.7.1.87, согласно которым в водном щитке этот провод присоединяется к системе уравнения потенциалов СУП.
Для этого соединяются следующие элементы:
- провод РЕ, приходящий из трансформаторной подстанции;
- стальные трубы коммуникаций, в том числе те, в которых проложены кабеля;
- металлические элементы конструкции и инженерных сооружений.
- корпус вводного электрощита и этажных щитков.
При пробое изоляции на корпус через заземление начинает идти ток, что вызывает отключение автоматического выключателя. Если же он недостаточен для срабатывания защиты то, благодаря заземлению, напряжение на корпусе будет отсутствовать. Это позволит избежать электротравмы, а появляющийся при этом ток утечки вызовет срабатывание УЗО.
Соединение большинства бытовых электроприборов с заземлением происходит в розетках с заземляющим контактом, во время монтажа к которому присоединяется провод РЕ.
Важно! В системах защитного заземления TN-S и TN-C-S розетки подключаются трёхжильным кабелем. К заземляющему контакту присоединяется провод с жёлтой или жёлто-зелёной изоляцией.
Достоинства системы TN-S по сравнению с другими системами
На сегодняшний день система защитного заземления TN-S обеспечивает максимально возможную защиту людей от поражения электрическим током. Её надёжность можно ещё больше повысить, если дополнительно установить систему уравнивания потенциалов и подключить УЗО или дифавтомат.
Дополнительное достоинство этого вида защиты в отсутствии необходимости устанавливать контур заземления в каждом доме. Такие заземления, согласно ПТЭЭП п.2.7.9., требуют ежегодной проверки своего состояния. Естественно, в большинстве случаев она проводится формально или не производится совсем, что не делает проживание в доме более безопасным.
Ещё одно преимущество заключается в том, что вся электронная аппаратура, находящаяся в металлическом заземлённом корпусе, оказывается защищённой от высокочастотных помех. Такие помехи создают электробритвы, пылесосы, электросварка и другая аппаратура. Поэтому эту систему предпочитают работники, имеющие дело с компьютерными сетями, телевидением, звукозаписывающей и радиолокационной аппаратурой.
Единственный, но существенный, недостаток этой системы заключается в её более высокой цене, поэтому допускается использовать вместо схемы TN-S уже установленное заземление типа TN-C-S.
Заключение
Подводя итог статье можно увидеть, что система TN-S является лучшей из существующих видов заземления и должна применяться во всех новых электросетях. При невозможности заменить на эту схему существующие линии электропередач следует использовать схему TN-C-S.
Похожие материалы на сайте:
- 5 систем заземления согласно ПУЭ
- Система заземления TT для частного дома
Источник: https://electricvdome.ru/zazemlenie/sistema-zazemlenija-tn-s.html
Особенности систем TN-C, TN-C-S, TN-S
Подробности Категория: Безопасность
Система TN используется для заземления оборудования с целью защиты от косвенного прикосновения к токоведущим частям при повреждении изоляции. PEN-проводник или РЕ-проводник присоединяется к заземляющему устройству питающей системы и частям, доступным прикосновению: открытым проводящим частям питаемого электрооборудования (ОПЧ) и сторонним проводящим частям (СПЧ).
В случае повреждения изоляции ток повреждения вызывает срабатывание устройства защиты от сверхтока, которое обесточивает цепь. Кроме того, низкое сопротивление цепи обратного тока на участке от доступных проводящих частей (ОПЧ и СПЧ) до заземляющего устройства источника питания ограничивает напряжение прикосновения, которое может появиться на поврежденном оборудовании.
Следовательно, это позволяет снизить вероятность поражения электрическим током.
Система TN может иметь одну из следующих возможных разновидностей: Система TN-C, система TN-S или система TN-C-S. Разновидность системы выбирается в зависимости от конкретных условий.
Система TN-C
Распределительная система TN-C имеет PEN-проводник, который выполняет одновременно функции нулевого рабочего проводника и нулевого защитного проводника на всем протяжении системы (рис. 1). Заметим, что устройство защитного отключения УЗО-Д на рис. 1. зачеркнуто. УЗО-Д не может надлежащим образом функционировать в такой цепи. Применение УЗО-Д в такой цепи не разрешается по двум причинам.
Во-первых, ток повреждения, который протекает от доступных проводящих частей поврежденного электрооборудования через человека и возвращается в PEN-проводник, не воздействует на защитно-отключающее устройство как дифференциальный (разностный) ток. Ток повреждения не будет различим. Значительная часть тока повреждения будет возвращаться к источнику питания через устройство защитного отключения.
Ток может возвращаться также через другое оборудование, корпуса которого (ОПЧ или СПЧ) имеют случайное или преднамеренное соединение с PEN-проводником. В этом случае УЗО-Д бесполезны.
Во-вторых, если корпуса электрооборудования заземлены (занулены) посредством PEN-проводника и корпуса имеют контакт с землей, часть тока нагрузки может возвращаться к источнику питания через землю при нормальных условиях.
Эта часть тока будет восприниматься защитно-отключающим устройством как дифференциальный (разностный) ток и устройство будет срабатывать, если эта часть тока, проходящая через землю, будет больше то кг) уставки защитно-отключающего устройства.
Величина тока уставки, как правило, не превышает 0,5 А.
Система TN-S
Если в системе TN отдельный защитный заземляющий проводник не связан с нулевым рабочим проводником, то такая система называется системой TN-S (см. рис. 3).
В системе TN-S возможно и целесообразно в качестве дополнительной защиты применить устройство защитного отключения (УЗО-Д). В этой системе цепь нагрузочного тока отделена от земли и, следовательно, устройство
Рис. 1. Система TN-C (однофазная сеть)
Рис. 2. Система TN-S (однофазная сеть)
защитного отключения будет нормально функционировать, обеспечивая защиту от замыкания на землю.
В ряде стран системы TN-C и TN-S используются для электроустановок в производственных зданиях, в высотных зданиях с их собственными понизительными трансформаторами и других подобных помещениях. Когда важно обеспечить защиту систем передачи информации и линий связи от помех, как правило, используется система TN-S (отдельный защитный проводник — РЕ-проводник).
Система TN-C-S
Наиболее часто в сетях общего пользования используется система TN-C-S, которая является комбинацией систем TN-C и TN-S. PEN-проводник в системе TN-C-S используется только в распределительной системе общего пользования, а затем «расщепляется» на отдельный нулевой рабочий проводник и нулевой защитный проводник в зданиях потребителей (рис. 3.). В США металлические кабелепроводы и распределительные щитки присоединяются к заземленному PEN-проводнику.
В ряде стран Европы PEN-проводник «расщепляется» на нулевой рабочий проводник и РЕ-проводник при площади поперечного сечения ниже 10 кв. мм (по меди). В США PEN-проводник расщепляется на отдельные нулевой рабочий и РЕ-проводники на вводе электрической сети в здание. В США отсутствует критерий расщепления PEN-проводника по площади поперечного сечения.
Во всех заземленных распределительных системах (системы TN-) заземленный PEN-проводник часто соединяется с зазем лиге лями в нескольких точках сети. Требования, относящиеся к условиям заземления этого типа систем, рассмотрены далее. Устройства защитного отключения УЗО-Д (RCD, GFCI) не могут удовлетворительно функционировать в той части сети, где используется PEN-проводник по тем же причинам, по которым эти устройства не могут удовлетворительно функционировать в системе TN-C.
Однако, на участке, где PEN-проводник расщеплен на отдельные РЕ- и N-проводники, применение УЗО не только возможно, но и желательно также как и в системе TN-S.
В США N-проводник не разрешается присоединять к земле (заземлять) со стороны нагрузки после расщепления.
Исключением из этого правила являются линии для приготовления пищи (кухни предприятий питания), предприятия типа прачечных, химчистки и электрические сети, идущие от одного здания или сооружения к другим зданиям или сооружениям, являющимся частями одного владения (например, сети, идущие от здания к гаражу или к сараю).
В этом случае питающую линию второго здания или сооружения разрешается рассматривать также как основную питающую линию. Это означает, что заземленный в начале линии N-проводник повторно заземляется, превращаясь в PEN-проводник.
Рис. 3. Система TN-C-S (однофазная сеть)
При этом отпадает надобность в РЕ-проводнике в сетях между зданиями или конструкциями. В каждом конкретном случае имеется возможность выбора между системами TN-C, TN-S или TN-C-S, или, другими словами, — возможность решения вопроса о необходимости изоляции от земли N-проводника со стороны нагрузки после расщепления PEN-проводника.
Использование PEN-проводника в питающей сети и недопущение дополнительных соединений с землей N-проводника во всех точках сети со стороны нагрузки в здании рекомендуется во всех случаях. Систему TN-S необходимо использовать там, где в сетях потребителя требуется УЗО-Д (GFCI — в США). В США защита с помощью GFC1 (УЗО-Д) требуется для штепсельных розеток в подвальных помещениях домов, гаражах, кухнях, ванных комнатах, наружных установках.
Практика использования заземленного нейтрального проводника питающей сети для заземления металлических корпусов кухонного оборудования (электрических плит) предприятий по приготовлению пищи и корпусов электрооборудования для сушки одежды ведет начало со времен второй мировой войны как следствие экономии меди за счет отказа от РЕ-проводника.
За время эксплуатации системы TN-C на этих предприятиях было зарегистрировано сравнительно небольшое число случаев поражения электрическим током. Можно считать, что в этих производствах, характеризуемых наличием симметричной трехфазной нагрузки, система TN-C выдержала испытание временем и потому ее применение разрешено.
На рис. 3. символом UK обозначено напряжение PEN-проводника, обусловленное падением напряжения в PEN-проводнике распределительной системы при протекании тока короткого замыкания.
Во всех случаях система TN обеспечивает определенную степень защиты от поражения электрическим током, вызванным пробоем изоляции фазных проводников на заземленные доступные проводящие части, посредством ограничения напряжения UK во время короткого замыкания и за счет ограничения длительности короткого замыкания посредством его отключения устройством защиты от сверхтоков. Амперсекундныс характеристики устройства защиты от сверхтоков выбираются с учетом опасности перегрева проводников сети, вызываемого сверхтоками, а также с учетом пусковых токов двигателей. Амперсекундные характеристики устройств защиты от сверхтоков, как правило, выбираются без учета условий электробезопасности, но, практически, заземление оборудования в сочетании с устройством защиты от сверхтока может обеспечить приемлемый уровень защиты от поражения электрическим током во многих случаях.
Напряжения в системе TN при повреждении изоляции
Ампер-секундные характеристики устройств защиты от сверхтоков выбираются для защиты от перегрева проводников. Значение тока, обычно, порядка 10 А и более. Малое сопротивление цепи обратного тока (ЦОТ), обусловленное использованием РЕ- и PEN-проводников, ограничивает значение напряжения PEN-проводника и способствует быстрому срабатыванию устройства защиты от сверхтока, делая в большинстве случаев серьезное поражение электрическим током маловероятным.
В отдельных случаях, когда человек может быть особенно чувствителен к воздействию электрического тока, что может быть обусловлено, например, малым сопротивлением тела (большая или влажная площадь контакта), задача решается применением дополнительной защиты в форме защитно-отключающих устройств. Высокая чувствительность и быстродействие этих устройств снижают вероятность поражения электрическим током до очень низких значений.
В сельских районах высокое значение сопротивления петли «фаза — нуль» в конце протяженных распределительных сетей обусловлено значительным расстоянием между питающим трансформатором и потребителями. В этом случае высокое значение сопротивления петли «фаза — нуль» приводит к низкому значению тока короткого замыкания и к увеличенному времени срабатывания устройства защиты от сверхтока у потребителей.
Основная часть сопротивления цепи «фаза — нуль» приходится на «сетевую сторону» распределительной системы. Падение напряжения в PEN-проводнике распределительной системы при повреждении изоляции фазного проводника проявляется в виде потенциала на доступных проводящих частях электрооборудования и всех других проводящих частях установок, связанных с PEN-проводником.
Заметим, что при замыкании «фаза — фаза» или «фаза — PEN» в распределительной сети при системе TN-C-S (рис. 3) до момента отключения тока короткого замыкания устройством защиты от сверхтока т.кз. преодолевает сопротивление PEN-проводника и фазного L-проводника. Сопротивление PEN-проводников протеканию т.кз. вызывает падение напряжения между заземляющим устройством нейтрали питающего трансформатора и РЕ-проводником, который присоединен к ОПЧ и СПЧ.
Это падение напряжения вызывает напряжение прикосновения между ОПЧ, СПЧ и землей. В США нагрузочный конец PEN-проводника требуется соединять с землей, но сопротивление заземляющего устройства обычно составляет несколько Ом и иногда может быть и выше в зависимости от сопротивления земли.
Сельская сеть системы TN-C-S, выполненная в виде BJT, характеризуется сравнительно высоким сопротивлением петли «фаза — нуль», обусловленным относительно большой протяженностью линий. В этой системе повторное заземление PEN-проводника вызывает значительное снижение его потенциала при коротком замыкании фазного проводника (L-проводника) на PEN-проводник. Это показано на упрощенной схеме (рис. 3).
PEN-проводники в системе TN заземлены во многих точках системы. В результате этого сопротивление между PEN-проводником и землей обычно невелико. Кроме того, из-за того, что сопротивление PEN-проводника по сравнению с шунтирующими его сопротивлениями заземлителей относительно мало, часть тока к.з., протекающая по PEN-проводнику значительно превосходит часть тока к.з., протекающего через землю.
Рис. 4. Распределение потенциала в PEN-проводнике при ОКЗ
Следовательно, градиент потенциала земли вдоль трассы линии от питающего трансформатора до места к.з. сравнительно невелик и становится более пологим из-за влияния PEN-проводника. Потенциал PEN-проводника при к.з.
не превышает 100 В при напряжении системы 380/220 В. Распределение напряжения в короткозамкнутой цепи, определяющее напряжение на ОПЧ и СПЧ при о.к.з.
, зависит от соотношения сопротивлений отдельных ветвей ЦОТ, включающих сопротивления заземляющего устройства и сопротивлений L1 (или L2, или L3) и PEN-проводников).
Если сопротивление заземлителей на каждом конце PEN-проводника были равны между собой, напряжение ОПЧ и СПЧ, соединенных с РЕ-проводником, не более 50 В, т. е. потенциал заземлителя равен половине падения напряжения в PEN-проводнике.
Источник: https://forca.com.ua/info/bezopasnost/osobennosti-sistem-tn-c-tn-c-s-tn-s.html
Системы заземления TN,TT,TN-C,TN-S,TN-C-S и IT
Защита электрических сетей
Основные понятия в теме типы заземления
Чтобы разобраться с системами заземления определюсь с основными понятиями, которые будут использоваться в этой статье. Вы, конечно, можете прочитать пункты 1.7.3-1.7.7 главы 7, ПУЭ, если любите первоисточники. Здесь я не буду переписывать ПУЭ, просто расскажу, что нужно понимать под отдельными словами в этой статье.
Прежде всего, что такое заземление эклектической сети, по сути
Заземление электрической сети это соединение всех открытых для прикосновения токопроводящих частей электроприборов (например, корпусов) и доступной арматуры (например, металлические водопроводные трубы) с землей (в буквальном смысле).
Зачем нужно заземление?
Земля, вернее проводящая часть земли, имеет нулевой электрический потенциал в любой своей точке. Части электроприборов, по которым в нормальном режиме не протекает электрический ток, совершенно безопасны для человека.
Другая ситуация в аварийной ситуации при которой по корпусу бытового прибора начинает течь ток. В такой аварийной ситуации прикосновение к корпусу будет представлять серьезную опасность для человека.
Именно для защиты человека от поражения электрическим током, а также для защиты от последствий электроаварий (например, пожара) и предназначено ЗАЗЕМЛЕНИЕ.
Почему заземление защищает человека?
Как я сказал, проводящая часть Земли имеет нулевой электрический потенциал.
Если на стороне проводника соединенного с землей возникает электрический потенциал (возникает аварийная ситуация), то он будет стремиться сравняться с нулевым потенциалом земли и ток потечет по направлению земли.
Специальный электроприбор, отвечающий за аварийное отключение электропитания, также соединен с землей. Между аварийным проводником и устройством защиты возникает электрическая цепь, которая и отключает аварийный участок от электропитания.
Но эта схема защиты сработает, если все элементы электросети соединены с землей. Причем говоря обо всех элементах сети, имеется в виду элементы сети от генераторов подающих электропитания до простой розетки в квартире.
При этом. Схема, по которой сделано заземление основного генератора (источника) электропитания электросети должна совпадать со всеми схемами заземления этой сети. Вернее наоборот. Схемы заземления сети должны соответствовать схеме заземления источника электропитания.
Система заземления TN (открытые части соединены с нейтралью)
При системе заземления TN одна точка источника питания электрической сети соединяется с землей при помощи заземляющего электрода и заземляющих проводников. Заземляющий электрод имеет непосредственный контакт с землей. При системе заземления TN открытые проводящие части соединяются с нейтралью, а нейтраль соединяется с землей.
Система заземления TN-C-S
Система заземления, при которой разрешено применение и системы заземления TN-C (4-х/2-х проводной) и системы заземления TN-S (5-ти/3-х проводной).
Важно! При системе заземления TN-C-S, запрещено использовать систему TN-C ниже системы TN-S,так как любой обрыв нейтрали в системе TN-C приведет к обрыву защитного провода после системы TN-S.(смотри рисунок)
Система заземления TT-заземленная нейтраль
При системе заземления ТТ средняя точка источника питания соединяется с землей. Все проводящие части электросети соединяются с землей через заземляющий электрод отличный от электрода источника питания. При этом зоны растекания обоих электродов могут пересекаться.
Система заземления IT –изолированная нейтраль
При системе заземления IT полностью изолирована для всей электросети или сопротивление соединения с землей стремится к бесконечности.
На этом все! Относитесь к электрике с почтением!
Elesant.ru
Другие статьи раздела: Электрические сети
Источник: https://elesant.ru/zashchita-elektrosetej/zashchita-elektricheskikh-setej/sistemy-zazemlenija-tn-tt-tnc-tns-it