Что такое собственная проводимость полупроводников

Полупроводники

что такое собственная проводимость полупроводников

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: полупроводники, собственная и примесная проводимость полупроводников

До сих пор, говоря о способности веществ проводить электрический ток, мы делили их на проводники и диэлектрики. Удельное сопротивление обычных проводников находится в интервале Ом·м; удельное сопротивление диэлектриков превышает эти величины в среднем на порядков: Ом·м.

Но существуют также вещества, которые по своей электропроводности занимают промежуточное положение между проводниками и диэлектриками. Это полупроводники: их удельное сопротивление при комнатной температуре может принимать значения в очень широком диапазоне Ом·м.

К полупроводникам относятся кремний, германий, селен, некоторые другие химические элементы и соединения (Полупроводники чрезвычайно распространены в природе. Например, около 80% массы земной коры приходится на вещества, являющиеся полупроводниками).

Наиболее широко примененяются кремний и германий .

особенность полупроводников заключается в том, что их электропроводность резко увеличивается с повышением температуры. Удельное сопротивление полупроводника убывает с ростом температуры примерно так, как показано на рис. 1.

Рис. 1. Зависимость для полупроводника

Иными словами, при низкой температуре полупроводники ведут себя как диэлектрики, а при высокой — как достаточно хорошие проводники. В этом состоит отличие полупроводников от металлов: удельное сопротивление металла, как вы помните, линейно возрастает с увеличением температуры.

Между полупроводниками и металлами имеются и другие отличия. Так, освещение полупроводника вызывает уменьшение его сопротивления (а на сопротивление металла свет почти не оказывает влияния). Кроме того, электропроводность полупроводников может очень сильно меняться при введении даже ничтожного количества примесей.

Опыт показывает, что, как и в случае металлов, при протекании тока через полупроводник не происходит переноса вещества. Стало быть, электрический ток в полупроводниках обусловлен движением электронов.

Уменьшение сопротивления полупроводника при его нагревании говорит о том, что повышение температуры приводит к увеличению количества свободных зарядов в полупроводнике. В металлах ничего такого не происходит; следовательно, полупроводники обладают иным механизмом электропроводности, чем металлы. И причина этого — различная природа химической связи между атомами металлов и полупроводников.

Ковалентная связь

Металлическая связь, как вы помните, обеспечивается газом свободных электронов, который, подобно клею, удерживает положительные ионы в узлах кристаллической решётки. Полупроводники устроены иначе — их атомы скрепляет ковалентная связь. Давайте вспомним, что это такое.

Электроны, находящиеся на внешнем электронном уровне и называемые валентными, слабее связаны с атомом, чем остальные электроны, которые расположены ближе к ядру. В процессе образования ковалентной связи два атома вносят «в общее дело» по одному своему валентному электрону. Эти два электрона обобществляются, то есть теперь принадлежат уже обоим атомам, и потому называются общей электронной парой (рис. 2).

Рис. 2. Ковалентная связь

Обобществлённая пара электронов как раз и удерживает атомы друг около друга (с помощью сил электрического притяжения). Ковалентная связь — это связь, существующая между атомами за счёт общих электронных пар. По этой причине ковалентная связь называется также парноэлектронной.

Кристаллическая структура кремния

Теперь мы готовы подробнее изучить внутреннее устройство полупроводников. В качестве примера рассмотрим самый распространённый в природе полупроводник — кремний. Аналогичное строение имеет и второй по важности полупроводник — германий.

Пространственная структура кремния представлена на рис. 3 (автор картинки — Ben Mills). Шариками изображены атомы кремния, а трубки, их соединяющие, — это каналы ковалентной связи между атомами.

Рис. 3. Кристаллическая структура кремния

Обратите внимание, что каждый атом кремния скреплён с четырьмя соседними атомами. Почему так получается?

Дело в том, что кремний четырёхвалентен — на внешней электронной оболочке атома кремния расположены четыре валентных электрона. Каждый из этих четырёх электронов готов образовать общую электронную пару с валентным электроном другого атома.

Так и происходит! В результате атом кремния окружается четырьмя пристыковавшимися к нему атомами, каждый из которых вносит по одному валентному электрону.

Соответственно, вокруг каждого атома оказывается по восемь электронов (четыре своих и четыре чужих).

Более подробно мы видим это на плоской схеме кристаллической решётки кремния (рис. 4).

Рис. 4. Кристаллическая решётка кремния

Ковалентные связи изображены парами линий, соединяющих атомы; на этих линиях находятся общие электронные пары. Каждый валентный электрон, расположенный на такой линии, большую часть времени проводит в пространстве между двумя соседними атомами.

Однако валентные электроны отнюдь не «привязаны намертво» к соответствующим парам атомов. Происходит перекрытие электронных оболочек всех соседних атомов, так что любой валентный электрон есть общее достояние всех атомов-соседей.

От некоторого атома 1 такой электрон может перейти к соседнему с ним атому 2, затем — к соседнему с ним атому 3 и так далее.

Валентные электроны могут перемещаться по всему пространству кристалла — они, как говорят, принадлежат всему кристаллу (а не какой-либо одной атомной паре).

Тем не менее, валентные электроны кремния не являются свободными (как это имеет место в металле). В полупроводнике связь валентных электронов с атомами гораздо прочнее, чем в металле; ковалентные связи кремния не разрываются при невысоких температурах.

Энергии электронов оказывается недостаточно для того, чтобы под действием внешнего электрического поля начать упорядоченное движение от меньшего потенциала к большему.

Поэтому при достаточно низких температурах полупроводники близки к диэлектрикам — они не проводят электрический ток.

Собственная проводимость

Если включить в электрическую цепь полупроводниковый элемент и начать его нагревать, то сила тока в цепи возрастает. Следовательно, сопротивление полупроводника уменьшается с ростом температуры. Почему это происходит?

При повышении температуры тепловые колебания атомов кремния становятся интенсивнее, и энергия валентных электронов возрастает. У некоторых электронов энергия достигает значений, достаточных для разрыва ковалентных связей. Такие электроны покидают свои атомы и становятся свободными (или электронами проводимости) — точно так же, как в металле. Во внешнем электрическом поле свободные электроны начинают упорядоченное движение, образуя электрический ток.

Чем выше температура кремния, тем больше энергия электронов, и тем большее количество ковалентных связей не выдерживает и рвётся. Число свободных электронов в кристалле кремния возрастает, что и приводит к уменьшению его сопротивления.

Разрыв ковалентных связей и появление свободных электронов показан на рис. 5. На месте разорванной ковалентной связи образуется дырка — вакантное место для электрона. Дырка имеет положительный заряд, поскольку с уходом отрицательно заряженного электрона остаётся нескомпенсированный положительный заряд ядра атома кремния.

Рис. 5. Образование свободных электронов и дырок

Дырки не остаются на месте — они могут блуждать по кристаллу. Дело в том, что один из соседних валентных электронов, «путешествуя» между атомами, может перескочить на образовавшееся вакантное место, заполнив дырку; тогда дырка в этом месте исчезнет, но появится в том месте, откуда электрон пришёл.

При отсутствии внешнего электрического поля перемещение дырок носит случайный характер, ибо валентные электроны блуждают между атомами хаотически. Однако в электрическом поле начинается направленное движение дырок. Почему? Понять это несложно.

На рис. 6 изображён полупроводник, помещённый в электрическое поле . В левой части рисунка — начальное положение дырки.

Рис. 6. Движение дырки в электрическом поле

Куда сместится дырка? Ясно, что наиболее вероятны перескоки «электрон > дырка» в направлении против линий поля (то есть к «плюсам», создающим поле). Один из таких перескоков показан в средней части рисунка: электрон прыгнул влево, заполнив вакансию, а дырка, соответственно, сместилась вправо. Следующий возможный скачок электрона, вызванный электрическим полем, изображён в правой части рисунка; в результате этого скачка дырка заняла новое место, расположенное ещё правее.

Мы видим, что дырка в целом перемещается по направлению линий поля — то есть туда, куда и полагается двигаться положительным зарядам. Подчеркнём ещё раз, что направленное движение дырки вдоль поля вызвано перескоками валентных электронов от атома к атому, происходящими преимущественно в направлении против поля.

Таким образом, в кристалле кремния имеется два типа носителей заряда: свободные электроны и дырки. При наложении внешнего электрического поля появляется электрический ток, вызванный их упорядоченным встречным движением: свободные электроны перемещаются противоположно вектору напряжённости поля , а дырки — в направлении вектора .

Возникновение тока за счёт движения свободных электронов называется электронной проводимостью, или проводимостью n-типа. Процесс упорядоченного перемещения дырок называется дырочной проводимостью,или проводимостью p-типа

Источник: https://ege-study.ru/ru/ege/materialy/fizika/poluprovodniki/

ЧИТАЙТЕ ЕЩЕ ПО ТЕМЕ:

Собственная и примесная проводимость полупроводников

что такое собственная проводимость полупроводников

Определение 1

В полупроводниках основная зона разделена с зоной возбужденных уровней конечным интервалом энергий ∆E. У проводника она получила название валентной, а зона возбужденный состояний – зоной проводимости.

Если T=0 К, то валентная зона заполняется целиком. В этом случае, зона проводимости свободна. Отсюда следует, что вблизи абсолютного нуля полупроводники не способны проводить ток. Отличие диэлектриков и полупроводников состоит в ширине запрещенной зоны ∆E. Диэлектриками считают полупроводники при ∆E>2 эВ.

Примечание 1

Если температура увеличивается, электроны начинают производить обмен энергии с ионами кристаллической решетки. Это может стать причиной обретения добавочной кинетической энергии ≈kT. Ее количества достаточно для перевода некоторой части электронов в зону проводимости. Там они способны проводить ток.

Определение 2

В валентной зоне освобождаются квантовые состояния, которые электронами не заняты. Эти состояния называют дырками. Они являются носителями тока.

Электроны способны совершать квантовые переходы в незаполненные состояния. Заполненные состояния в этом случае освобождаются, то есть становятся дырками. В результате чего можно наблюдать появление равновесной концентрации дырок.

При отсутствии внешнего поля ее значение одинаковое по всему объему проводника. Квантовый переход сопровождается его перемещением против поля. Он способен уменьшить значение потенциальной энергии системы. Переход, который связан с перемещением в направлении поля, способен увеличить потенциальную энергию системы.

При наличии преобладания количества переходов против поля над переходами по полю через полупроводник начнет протекать ток по движению приложенного электрического поля. Незамкнутый полупроводник характеризуется течением тока до тех пор, пока электрическое поле не будет компенсировать внешнее. Конечный результат такой же, как если бы в качестве носителей тока были не электроны, а положительно заряженные дырки.

Отсюда следует, что различают два вида проводимости полупроводников: электронная и дырочная.

Носителя тока в металлах и полупроводниках считаются электроны, а дырки введены формально. Дырки в качестве положительно заряженных частиц не существует. Но перемещение в электрическом поле такое же, как и при классическом рассмотрении положительно заряженных частиц. Небольшая концентрация электронов в зоне проводимости и дырки в валентной зоне позволяют применять классическую статистику Больцмана.

Примечание 2

Дырочная и электронная проводимости не связаны с наличием примесей. Ее называют собственной электропроводностью полупроводников.

Если имеется идеально чистый проводник без примесей, то каждому освобожденному электрону при помощи теплового движения или света соответствовало бы образование одной дырки, иначе говоря, количество электронов и дырок, участвующих в создании тока, было бы одинаковое.

Существование идеально чистых полупроводников невозможно, поэтому при необходимости их создают искусственным путем. Даже наличие малого количества примесей способно повлиять на изменение свойств полупроводника.

Примесная проводимость полупроводников

Определение 3

Электропроводность полупроводников, вызванная наличием примесей атомов других химических элементов, называют примесной электрической проводимостью.

Небольшое их количество способно существенно влиять на увеличение проводимости. В металлах происходит обратное явление. Примеси способствуют уменьшению проводимости металлов.

Увеличение проводимости с примесями объясняется тем, что происходит появление дополнительных энергетических уровней в полупроводниках, находящихся в запрещенной зоне полупроводника.

Донорные и акцепторные примеси

Пусть дополнительные уровни в запрещенной зоне появляются около нижнего края зоны проводимости. Если интервал, отделяющий дополнительные уровни энергии от зоны проводимости, мал при сравнении с шириной запрещенной зоны, то произойдет увеличение числа электронов в зоне проводимости, значит, сама проводимость полупроводника возрастет.

Определение 4

Примеси, которые перемещают электроны в зону проводимости, называют донорами или донорными примесями. Дополнительные энергоуровни получили название донорных уровней.

Определение 5

Полупроводники с донорными примесями – это электронные или полупроводники n-типа.

Определение 6

Пусть с введением примеси возникают добавочные уровни около верхнего края валентной зоны. В этом случае электроны из этой зоны переходят на добавочные уровни. Валентная зона характеризуется появлением дырок, так как появляется дырочная электропроводность проводника. Примеси такого рода получили название акцепторных. Дополнительные уровни, располагаемые в них, называют акцепторными.

Определение 7

Полупроводники с акцепторными примесями получили название дырочных или полупроводников p-типа. Имеют место на существование смешанные полупроводники.

Вид проводимости, которым обладает полупроводник, определяют по знаку эффекта Холла.

Определение 8

Легирование – это процесс введение примесей. Если примесный уровень обладает высокой концентрацией, то происходит их расщепление. Перекрытие границ соответствующих энергетических зон считается результатом процесса.

Пример 1

Объяснить, к какому типу примеси относят атомы мышьяка, бора, находящихся в кристаллической решетке кремния.

Решение

Кремний является четырехвалентным атомом, значит, атом содержит 4 электрона. Мышьяк пятивалентен, то есть содержит 5, причем пятый из которых отщепляется по причине наличия теплового движения. Положительный ион мышьяка вытесняет из решетки один из атомов кремния и встает на его место. Происходит возникновение электрона проводимости между узлами решетки. Отсюда следует, что мышьяк считается донорной примесью для кремния.

При рассмотрении бора в качестве примеси для кремния видно, что атом бора имеет наружную оболочку, состоящую из трех электронов. Атом бора захватывает четвертый электрон из соседнего места, находящегося в кристалле кремния. Именно там происходит появление дырки. Отрицательный ион бора, появившийся в ней, вытесняет атом кремния из кристаллической решетки и занимает его место. Говорят о возникновении в нем дырочной проводимости. Бор считается акцепторной примесью.

Ответ: мышьяк – донорная примесь, бор – акцепторная.

Пример 2

Даны термоэлементы с протеканием тока от металла к полупроводнику и наоборот. Объяснить, почему это происходит.

Решение

По условию, электронная и дырочная проводимость проходит в горячем спае. Это объясняется тем, что на конце электронного полупроводника с высокой температурой скорость электронов намного больше, чем в холодном. Отсюда следует, что электроны имеют возможность проходить от горячего конца к холодному до возникновения по причине перераспределения зарядов электрического поля и не останавливать поток диффундирующих электронов.

Только после установления равновесного состояния горячему концу, который потерял все электроны, соответствуют положительные заряды, а холодному – отрицательные. Можно сделать вывод, что имеется разность потенциалов между горячим и холодным концами с положительным знаком.

Дырочный полупроводник характеризуется обратным процессом. Диффузия идет от горячего конца к холодному, причем первый из них обладает отрицательным зарядом, а холодный – положительным. Получаем, что разности потенциалов имеют отрицательное значение, в отличие от электронного полупроводника.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Не получается написать работу самому?

Доверь это кандидату наук!

Источник: https://zaochnik.com/spravochnik/fizika/postojannyj-elektricheskij-tok/sobstvennaja-i-primesnaja-provodimost/

Примесная проводимость полупроводников

Электрическая проводимость полупроводников, которая вызвана наличием примесей атомов других химических элементов, называется примесной электрической проводимостью. Самые небольшие количества примесей могу существенно увеличивать проводимость полупроводников. В металлах, наблюдается обратное явление. Примеси всегда уменьшают проводимость металлов.

Увеличение проводимости при наличии примесей объясняют тем, что в полупроводниках появляются дополнительные энергетические уровни, которые находятся в запрещенной зоне полупроводника.

Донорные примеси

Пусть дополнительные уровни в запрещенной зоне появились около нижнего края зоны проводимости.

В том случае, если интервал энергии, который отделяет дополнительные уровни энергии от зоны проводимости, мал в сравнении с шириной запрещенной зоны, то число электронов в зоне проводимости, следовательно, сама проводимость полупроводника увеличится.

Примеси, которые поставляют электроны в зону проводимости, называют донорами (донорными примесями). Дополнительные энергоуровни, при этом, называют донорными уровнями.

Полупроводники, имеющие донорные примеси называют электронными (полупроводниками n-типа).

Акцепторные примеси

Пусть с введением примеси добавочные уровни возникают около верхнего края валентной зоны. В этом случае электроны из валентной зоны переходят на эти добавочные уровни. В валентной зоне при этом появляются дырки, так возникает дырочная электропроводность полупроводника. Такие примеси называют акцепторами (акцепторными примесями). Дополнительные уровни при этом называют акцепторными уровнями.

Полупроводники, имеющие акцепторные примеси называют дырочными (полупроводниками p-типа). Могут существовать смешанные полупроводники.

Каким видом проводимости обладает полупроводник (электронной или дырочной) судят по знаку эффекта Холла.

Процесс введения примесей называется легированием. При очень больших концентрациях примесных уровней может наблюдаться расщепление примесных уровней, в результате чего они могут перекрыть границы соответствующих энергетических зон.

Пример 1

Задание: Объясните, каким типом примеси могут служить атомы мышьяка, атомы бора в кристаллической решетке кремния?

Решение:

Рассмотрим кремний и мышьяк. Кремний — четырехвалентный атом, следовательно, атом кремния имеет четыре электрона. Мышьяк пятивалентен, значит, его атом содержит пять электронов. Пятый электрон может отщепиться от атома мышьяка из-за теплового движения. Положительный ион мышьяка может вытеснить из решетки один из атомов кремния, встав не его место. Так, между узлами решетки появится электрон проводимости. Следовательно, получается, что мышьяк является донорной примесью для кремния.

ЭТО ИНТЕРЕСНО:  Что такое эффект холла

Рассмотрим бор, как примесь к кремнию. Наружная оболочка атома бора имеет три электрона. Атом бора может захватить недостающий четвертый электрон, из какого — либо соседнего с ним места кристалла кремния. В этом месте появляется дырка, а появившийся отрицательный ион бора может вытеснить из кристаллической решетки атом кремния и занять его место. В кристалле кремния возникает дырочная проводимость. Бор — акцепторная примесь.

Ответ: Мышьяк — донорная примесь в решетке кремния, бор — акцепторная примесь для кремния.

Пример 2

Задание: В термоэлементах в одних случаях ток в горячем спае течет от металла к полупроводнику, а в других от полупроводника к металлу, объясните, почему?

Решение:

Именно различие между электронной и дырочной проводимостью полупроводников объяснятся процесс, описанный в условии задания.

В электронном полупроводнике скорость электронов в горячем конце больше, чем в холодном.

Следовательно, электроны просачиваются (диффундируют) от горячего конца к холодному до тех пор, пока возникающее из-за перераспределения зарядов электрическое поле не останавливает поток диффундирующих электронов.

После установления равновесия горячий конец, который потерял электроны, имеет положительный заряд, холодный конец, получил избыток электронов, следовательно, имеет отрицательный заряд. Значит, между горячим и холодным концами появляется разность потенциалов (положительная).

В дырочном полупроводнике происходит обратный процесс. Диффузия дырок проходит от горячего конца к холодному. При этом горячий конец получает отрицательный заряд, холодный конец заряжается положительно. Знак разности потенциалов между горячим и холодным концами отрицательный.

Источник: https://spravochnick.ru/fizika/sobstvennaya_i_primesnaya_provodimost_poluprovodnikov/

Полупроводники — Химия

что такое собственная проводимость полупроводников

В предыдущих уроках мы рассказывали о проводниках и диэлектриках и вскользь упомянули о том, что есть промежуточная форма проводимости, которая при определенных условиях может принимать свойства проводника или диэлектрика. Этот тип веществ называют полупроводниками.

Напомню: по электрическим свойствам полупроводники занимают среднее место между проводниками и непроводниками тока.
Наиболее часто для производства полупроводников используют германий, кремний, реже — селен, закись меди и другие вещества.

Свойства полупроводников

Электропроводность полупроводников сильно зависит от окружающей температуры. При температуре, близкой к абсолютному нулю (- 273С), они ведут себя по отношению к электрическому току как изоляторы. Большинство же проводников, наоборот, при такой температуре становятся сверхпроводящими, т. е.

почти не оказывают току никакого сопротивления. С повышением температуры проводников их сопротивление электрическому току увеличивается, а сопротивление полупроводников уменьшается. Электропроводность проводников не изменяется при действии на них света.

Электропроводность же полупроводников под действием света, так называемая фотопроводность, повышается.

Полупроводники могут преобразовывать энергию света в электрический ток. Проводникам же это совершенно не свойственно. Электропроводность полупроводников резко увеличивается при введении в них атомов некоторых других элементов. Электропроводность же проводников при введении в них примесей понижается.

Германий и кремний, являющиеся исходными материалами многих современных полупроводниковых приборов, имеют во внешних слоях своих оболочек по четыре валентных электрона. Всего же в атоме германия 32 электрона, а в атоме кремния 14.

Но 28 электронов германия и 10 электронов кремния, находящиеся во внутренних слоях их оболочек, прочно удерживаются ядрами и ни при каких обстоятельствах не отрываются от них. Только четыре валентных электрона атомов этих полупроводников могут, да и то не всегда, стать свободными.

Атом же полупроводника, потерявший хотя бы один электрон, становится положительным ионом. В полупроводнике атомы расположены в строгом порядке: каждый из них окружен четырьмя такими же атомами.

Они к тому же расположены настолько близко друг к другу, что их валентные электроны образуют единые орбиты, проходящие вокруг всех соседних атомов, связывая их в единое вещество.
Такую взаимосвязь атомов в кристалле полупроводника можно представить себе в виде плоской схемы, как показано на рис. 1, а.

Здесь большие шарики со знаком « + » условно изображают ядра атомов с внутренними слоями электронной оболочки (положительные ионы), а маленькие шарики — валентные электроны. Каждый атом, окружен четырьмя точно такими же. Любой из них связан с каждым соседним двумя валентными электронами, один из которых «свой», а второй заимствован у «соседа».

Это двухэлектронная, или валентная, связь. Самая прочная связь! В свою очередь, внешний слой электронной оболочки каждого атома содержит восемь электронов: четыре своих и по одному от четырех соседних атомов. Здесь уже невозможно различить, какой из валентных электронов «свой», а какой «чужой», поскольку они стали общими.

При такой связи атомов во всей массе кристалла германия или кремния можно считать, что кристалл полупроводника представляет собой одну большую молекулу. Схему взаимосвязи атомов в полупроводнике можно для наглядности упростить, изобразив ее так, как это сделано на рис. 1, 6. Здесь ядра атомов с внутренними электронными оболочками показаны в виде кружков со знаком плюс, а межатомные связи — двумя линиями, символизирующими валентные электроны.

Электропроводность полупроводников

При температуре, близкой к абсолютному нулю, полупроводник ведет себя как абсолютный непроводник, потому что в нем нет свободных электронов.

Если повышения температуры нет, связь валентных электронов с атомными ядрами ослабевает и некоторые из них вследствие теплового движения могут покидать свои атомы. Вырвавшийся из межатомной связи электрон становится свободным (на рис.

1, б — черная точка), а там, где он был до этого, образуется пустое место. Это пустое место в межатомной связи полупроводника условно называют дыркой (на рис. 1 ,б — разорвавшаяся линия). Чем выше температура, тем больше появляется свободных электронов и дырок.

Таким образом, образование в массе полупроводника дырки связано с уходом из оболочки атома валентного электрона, а возникновение дырки соответствует появлению положительного электрического заряда, равного отрицательному электрона.

Рис 1. Схема взаимосвязи атомов в кристале полупроводника (а) и упрощенная схема его структуры (б).

А теперь рассмотри рис. 2. На нем схематично изображено явление возникновения тока в полупроводнике. Причиной возникновения тока служит напряжение, приложенное к полюсам (на рис. 2 источник напряжения символизируют знаки « + » и « — »).

Вследствие тепловых явлений во всей массе полупроводника высвобождается из межатомных связей некоторое количество электронов (на рис. 2 они обозначены точками со стрелками).

Электроны, освобождавшиеся вблизи положительного полюса источника напряжения, притягиваются этим полюсом и уходят из массы полупроводника, оставляя после себя дырки. Электроны, ушедшие из межатомных связей на некотором удалении от положительного полюса, тоже притягиваются им и движутся в его сторону.

Но, встретив на своем пути дырки, электроны как бы «впрыгивают» в них (рис. 2, а), происходит заполнение межатомных связей. А ближние к отрицательному полюсу дырки заполняются другими электронами, вырвавшимися из атомов, расположенных еще ближе к отрицательному полюсу (рис. 2, б).

Пока в полупроводнике действует электрическое поле, этот процесс продолжается: нарушаются одни межатомные связи — из них уходят валентные электроны, возникают дырки — и заполняются другие межатомные связи — в дырки «впрыгивают» электроны, освободившиеся из каких — то других межатомных связей (рис. 2, б-в).

Рис 2. Схема движения электронов и дырок.

При температуре выше абсолютного нуля в полупроводнике непрерывно возникают и исчезают свободные электроны и дырки даже тогда, когда нет внешних электрических полей. Но электроны и дырки движутся хаотически в разные стороны и не уходят за пределы полупроводника.

В чистом полупроводнике число высвободившихся в каждый момент времени электронов равно числу образующихся при этом дырок. Общее же их число при комнатной температуре относительно невелико.

Поэтому электропроводность такого полупроводника, (называемая собственной), мала, он оказывает электрическому току довольно большое сопротивление. Но если в чистый полупроводник добавить даже ничтожное количество примеси в виде атомов других элементов, электропроводность его резко повысится.

При этом в зависимости от структуры атомов примесных элементов электропроводность полупроводника будет электронной или дырочной.

Электронная проводимость

Если какой-либо атом в кристалле полупроводника заменить атомом сурьмы, имеющим во внешнем слое электронной оболочки пять валентных электронов, этот атом — «пришелец» четырьмя электронами свяжется с четырьмя соседними атомами полупроводника. Пятый же валентный электрон атома сурьмы окажется «лишним» и станет свободным.

ЭТО ИНТЕРЕСНО:  Зачем нужна канифоль при пайке

Чем больше в полупроводник будет введено атомов сурьмы, тем больше в его массе окажется свободных электронов. Следовательно, полупроводник с примесью сурьмы приближается по своим свойствам к металлу: для того чтобы через него проходил электрический ток, в нем не обязательно должны разрушаться межатомные связи.

Их называют полупроводниками с электропроводностью или типа (n). Здесь латинская буква n — начальная буква латинского слова negativ (негатив), что значит «отрицательный».

Этот термин в данном случае нужно понимать в том смысле, что в полупроводнике типа n основными носителями тока являются отрицательные заряды, т.е. электроны.

Дырочная проводимость

Совсем иная картина получится, если в полупроводник ввести атомы с тремя валентными электронами, например индия. Каждый атом металла индия своими тремя электронами заполнит связи только с тремя соседними атомами полупроводника, а для заполнения связи с четвертым у него не хватает одного электрона. Образуется дырка.

Она, конечно, может заполниться каким — либо электроном, вырвавшимся из валентной связи с другими атомами полупроводника. Однако независимо от того, где будут дырки, в массе полупроводника с примесью индия не будет хватать электронов для их заполнения. И чем больше будет введено в полупроводник примесных атомов индия, тем больше в нем образуется дырок.

Чтобы в таком полупроводнике электроны могли перемещаться, совершенно обязательно должны разрушаться валентные связи между атомами. Вырвавшиеся из них электроны или же электроны, поступившие в полупроводник извне, движутся от дырки к дырке. А во всей массе полупроводника в любой момент времени число дырок будет больше общего числа свободных электронов.

Их называют полупроводниками с дырочной электропроводностью или тип (р).

Источник: https://himya.ru/poluprovodniki.html

Зонная структура полупроводников

Определение

Полупроводниками называют вещества, чья электропроводность меньше электропроводности металлов и больше электропроводности диэлектриков.

Полупроводники при температуре около абсолютного нуля имеют полную занятость электронами валентной зоны, которая отделена от зоны проводимости относительно узкой запрещенной зоной ($\Delta E\sim 1эВ$).

Полупроводники делят на собственные и примесные.

Собственные полупроводники

Определение

Собственные полупроводники — это химически чистые вещества, их проводимость называют собственной.

При $T=0K$ собственные полупроводники работают как диэлектрики. С ростом температуры электроны, находящиеся на верхних уровнях валентной зоны (1) могут переходить на нижние уровни зоны проводимости (2) рис.1. При помещении полупроводника во внешнее электрическое поле электроны движутся против поля, создавая электрический ток. Зона 2 становится зоной проводимости. Проводимость собственных полупроводников называют электронной (проводимостью $n$ — типа).

В результате перехода электронов из зоны 1 в зону 2 в валентной зоне возникают вакантные состояния, которые называют дырками.

При наличии внешнего электрического поля на освободившееся от электрона место может перейти электрон с соседнего уровня, тогда дырка возникнет там, откуда переместился электрон.

Данный процесс, при котором дырки заполняются электронами, эквивалентен движению дырки против перемещения электрона. Проводимость, которая обусловлена перемещением дырок называют дырочной проводимостью (проводимость -типа).

Так, получаем, что в собственных полупроводниках имеется два механизма проводимости: $n$ — типа и -типа. Количество электронов в зоне проводимости равно числу дырок в валентной зоне.

Проводимость полупроводников проявляется только при воздействии внешних факторов.

У собственных полупроводников уровень Ферми лежит в середине запрещенной зоны рис.1. Для перескока электрона с верхнего уровня валентной зоны на нижний уровень зоны проводимости необходимо потратить энергию активации, которая равна ширине запрещенной зоны ($\Delta E$).

При переходе электрона в зону проводимости в валентной зоне возникает дырка, значит, энергия, которая тратится на возникновение пары носителей тока делится на два.

Энергия, равная половине запрещенной зоны тратится на переброс электрона, равная ей энергия идет на образование дырки, следовательно, начало отсчета для этих процессов лежит посередине запрещенной зоны.

Удельная проводимость ($\gamma $) собственных полупроводников равна:

\[\gamma ={\gamma }_0e{-\frac{\Delta E}{2kT}}\left(1\right),\]

где ${\gamma }_0$ — постоянная, свойственная конкретному полупроводнику.

Одним из самых распространенных полупроводников является германий, который имеет решетку, в которой каждый атом имеет связь при помощи ковалентных связей с четырьмя «соседями».

Примеры задач с решением

Пример 1

Задание. Как объясняется увеличение проводимости собственных полупроводников с ростом температуры с точки зрения зонной теории?

Решение. Зонная теория объясняет повышение проводимости полупроводников при увеличении температуры тем, что количество электронов, которые в результате теплового возбуждения переходят в зону проводимости, растет, и они принимают участие в процессе проводимости.

Рассмотрим формулу, связывающую удельную проводимость собственного полупроводника и его температуру:

\[\gamma ={\gamma }_0e{-\frac{\Delta E}{2kT}}\left(1.1\right).\]

Прологарифмируем обе части выражения (1.1), получим:

\[{\ln (\gamma )\ }={\ln \left({\gamma }_0\right)\left(-\frac{\Delta E}{2kT}\right)\ }\left(1.2\right).\]

Из формулы (1.2) мы видим, что ${\ln (\gamma )\ }\sim \frac{1}{T}$. На рис.2 данную зависимость изобразим прямой. Угол наклона прямой ${{\rm ln\ }\gamma (\frac{1}{T})\ }$ задет ширина запрещенной зоны $\Delta E$. Продолжив прямую ${{\rm ln\ }\gamma (\frac{1}{T})\ }$ до пересечения с осью ${\rm ln\ }\gamma $ полуим ${\ln ({\gamma }_0)\ }$.

Пример 2

Задание. Что происходит с кристаллом германия, если повышать его температуру.

Решение. Идеальный кристалл германия при температуре близкой к абсолютному нулю является диэлектриком, поскольку все валентные электроны принимают участие в образовании валентных связей и не могут участвовать в проводимости.

Будем увеличивать температуру данного полупроводника. При этом тепловые колебания решетки ведут к разрыву некоторых валентных связей. Часть электронов отсоединяется, и они становятся свободными. На том месте, где был электрон, возникает «дырка». Эти «дырки» могут заполнять электроны из соседних пар.

В результате данного процесса дырка, как и электрон, движется по полупроводнику. Если внешнего электрического поля нет, то электроны и дырки совершают хаотические движения.

При наложении поля на полупроводник электроны станут двигаться против внешнего поля, а дырки по полю, при этом появляется собственная проводимость германия, вызванная движением, как электронов, так и дырок.

Для каждой температуры устанавливается определённая равновесная концентрация электронов и дырок, зависящая от температуры.

Читать дальше: зоны Френеля, векторная диаграмма.

Источник: https://www.webmath.ru/poleznoe/fizika/fizika_163_zonnaja_struktura_poluprovodnikov.php

Полупроводники. Собственная проводимость полупроводников

К полупроводникам относят широкий класс веществ, которые отлича­ются от металлов тем, что:

а) концентрация подвижных носителей заряда в них существенно ниже, чем концентрация атомов;

б) эта концентрация (а с ней и электропроводность) может меняться под влиянием температуры, освещения, небольшого количества примесей;

в) электрическое сопротивление уменьшается с ростом температуры.

Отличие полупроводников от диэлектриков условно. К диэлектрикам обычно относят вещества с удельным сопротивлением ρ > 1011-1012 Ом · см (при комнатной темпе­ратуре); к полупроводникам соответственно с ρ ≤ 1011 Ом · см.

Полупроводники по своему строению делятся на кристаллические, амфорные и стеклообразные, жидкие. По химическому составу полупроводники делятся на элементарные, т. е. состоящие из атомов одного сорта (Ge, Si, Se, Тe), двойные, тройные, четверные соединения.

Полупроводни­ковые соединения принято классифицировать по номерам групп периодической таблицы элемен­тов, к которым принадлежат входящие в соединение элементы.

Например, GaAs и InSb относятся к соединениям типа AIIIBV (существуют также и органические полупроводники).

Строение полупроводников

Строение полупроводников рассмотрим на примере кремния.

В кристаллической решетке кремния (Si) каждый атом имеет четыре ближайших соседа.

Кремний является четырехвалентным элементом, и взаимодействие пары соседних атомов осуществля­ется с помощью ковалентной, или парноэлектронной, связи, когда в каждой связи участвует по одному электрону от каждого атома.

Это так называемые коллективизированные электроны; большую часть времени они проводят в пространстве между соседними ионами кремния, удер­живая их друг возле друга. Каждый валентный электрон может двигаться по связи вдоль всего кристалла (от одного атома к другому).

При низких температурах парноэлектронные связи достаточно прочны, они не разрывают­ся, поэтому кремний не проводит электрический ток.

Тест. Электрический ток в полупроводниках. Собственная и примесная проводимости

Будьте внимательны! У Вас есть 10 минут на прохождение теста. Система оценивания — 5 балльная. Разбалловка теста — 3,4,5 баллов, в зависимости от сложности вопроса. Порядок заданий и вариантов ответов в тесте случайный. С допущенными ошибками и верными ответами можно будет ознакомиться после прохождения теста. Удачи!

Варианты ответов

  • носителями зарядов являются электроны.
  • вещества, электропроводность которых обусловлена подвижностью положительно или отрицательно заряженных ионов.
  • носителями тока выступают ионы и электроны.
  • носителями тока являются термоэлектроны.
  • носителями тока являются электроны и дырки

Классификация веществ по электрическим свойствам.

Понравилась статья? Поделиться с друзьями:
220 вольт
Как подключить электрический полотенцесушитель

Закрыть