Как найти общее напряжение

Соединение резисторов

как найти общее напряжение

Это такое соединение, при котором все элементы идут один за одним без разветвлений.

Свойства последовательного соединения

1. Ток во всех резисторах одинаков- I1 = I2 = I3;

2. Общее напряжение цепи равно сумме напряжений на всех резисторах- U=U1 + U2 + U3;

3.Сопротивление по отношению к входным зажимам называется входным сопротивлением и равно сумме сопротивлений участков — Rвх= R1 + R2 + R3;

4. Чем больше сопротивление участка, тем больше на нём падает напряжение-.

ПАРАЛЛЕЛЬНОЕ Соединение резисторов

Это такое соединение, при котором все начала элементов соединяются в одну точку, а все концы в другую и к этим точкам подводится напряжение.

Свойства параллельного соединения резистора:

1. Общее напряжение цепи равно напряжению на каждом участке-

U = U1 = U2 = U3

2. Общий ток цепи равен сумме токов на всех участках- I = I1 + I2 + I3

3. Чтобы найти входное сопротивление, рассчитывают вначале величину обратную входному сопротивлению

— проводимость (G)

Общая проводимость цепи равна сумме проводимостей на каждом участке.

G = G1 + G2 + G3

4.Чем больше сопротивление участка, тем меньше ток, протекающий на нем.

При параллельном соединении двух резисторов формулу входного сопротивления можно преобразовать

1.

2. Если известен общий ток, то можно найти ток ветви, умножив общий ток на сопротивление противоположной ветви и разделить на сумму сопротивлений ; .

Тестовые задания:

Задание Варианты ответов
1.Являются ли при последовательном соединении резисторов напряжения участков пропорционально сопротивлениям этих участков. Да;Нет.
2.Являются ли при параллельном соединении резисторов токи ветвей пропорциональны сопротивлениям этих ветвей. Да;Нет.
3.Укажите по какому из приведенных математических выражений нельзя рассчитать входное сопротивление двух параллельно соединенных резисторов. а) ; б);в) ; г)

Смешанное соединение резисторов

Пример решения задач

Дано:

U = 60 В

R1 = 7 Ом

R2 = 12 Ом

R3 = 4 Ом

Найти: I1; I2; I3 = ?

Резисторы R2 и R3 параллельны между собой, и их общее сопротивление R2-3 последовательно с R1.

Rвх = R1 + R2 — 3

R

вх =R1+R2∙3= 7 + 3 = 10 Ом

I1 = I

вх = 6 А

U2 — 3 = I∙R2 — 3

— находим напряжение разветвленного участка:

U2 — 3 = I∙R2 — 3 = 6∙3 = 18 В

U2 — 3 = U2 = U3 =18 В

— т.к. параллельное соединение

А

Дано:

U=240 В

R1 = 20 Ом

R2 = 120 Ом

R3 = 40 Ом

R4 = 60 Ом

R5 = 30 Ом

R6 = 20 Ом

Найти: I

1-6 -?

; R4-6 = 10 Ом;

;

; R2-3 = 30 Ом

Rвх=R1+R2-3+R4-6 = 20 + 30 +10 = 60 Ом;

; ;

U2-3 =I∙R2-3=

4∙30 = 120 В;

U2 — 3 = U2 = U3;

;

;

U4-6=I∙R4-6=4∙10=40B;

U4-6=U4=U5=U6;

;

;

;

Дано:

E =

20 В

Ri=2Ом

R1 =

9Ом

R2 =

6 Ом

R3 =

12 Ом

R4 =

1 Ом

R5 =

2 Ом

R6 =

1 Ом

R4-6 = R4 + R5 + R6;

;

R3-6 = 3 Ом;

Rвх = R1 + R3-6 +R2 = 9 + 3 + 6 = 18 Ом;

I=;

I=I1=I2=1А;

U3-6=I∙R3-6=1∙3=3В;

U3-6=U3=U4-6;

I3=;

I4=I5=I6=;

Cоставим подробное уравнение баланса мощностей для данной схемы. Оно является проверкой правильности решения задачи.

Pu=Pн+Р0;

EI=I21∙ R1+ I22∙ R2+ I23R3+I42R4+I25R5+I26+I2Ri;

20∙1=12∙9+12∙6+(0,25)2∙12+(0,75)2∙1+(0,75)22+(0,75)21+12∙2;

20Вт=20Вт- задача решена верно

ТОЭЭ   к библиотеке    

Знаете ли Вы, что такое мысленный эксперимент, gedanken experiment?Это несуществующая практика, потусторонний опыт, воображение того, чего нет на самом деле. Мысленные эксперименты подобны снам наяву. Они рождают чудовищ. В отличие от физического эксперимента, который является опытной проверкой гипотез, «мысленный эксперимент» фокуснически подменяет экспериментальную проверку желаемыми, не проверенными на практике выводами, манипулируя логикообразными построениями, реально нарушающими саму логику путем использования недоказанных посылок в качестве доказанных, то есть путем подмены. Таким образом, основной задачей заявителей «мысленных экспериментов» является обман слушателя или читателя путем замены настоящего физического эксперимента его «куклой» — фиктивными рассуждениями под честное слово без самой физической проверки.

Заполнение физики воображаемыми, «мысленными экспериментами» привело к возникновению абсурдной сюрреалистической, спутанно-запутанной картины мира. Настоящий исследователь должен отличать такие «фантики» от настоящих ценностей.

Релятивисты и позитивисты утверждают, что «мысленный эксперимент» весьма полезный интрумент для проверки теорий (также возникающих в нашем уме) на непротиворечивость. В этом они обманывают людей, так как любая проверка может осуществляться только независимым от объекта проверки источником. Сам заявитель гипотезы не может быть проверкой своего же заявления, так как причина самого этого заявления есть отсутствие видимых для заявителя противоречий в заявлении.

Это мы видим на примере СТО и ОТО, превратившихся в своеобразный вид религии, управляющей наукой и общественным мнением. Никакое количество фактов, противоречащих им, не может преодолеть формулу Эйнштейна: «Если факт не соответствует теории — измените факт» (В другом варианте » — Факт не соответствует теории? — Тем хуже для факта»).

Максимально, на что может претендовать «мысленный эксперимент» — это только на внутреннюю непротиворечивость гипотезы в рамках собственной, часто отнюдь не истинной логики заявителя. Соответсвие практике это не проверяет. Настоящая проверка может состояться только в действительном физическом эксперименте.

Эксперимент на то и эксперимент, что он есть не изощрение мысли, а проверка мысли. Непротиворечивая внутри себя мысль не может сама себя проверить. Это доказано Куртом Гёделем.

Понятие «мысленный эксперимент» придумано специально спекулянтами — релятивистами для шулерской подмены реальной проверки мысли на практике (эксперимента) своим «честным словом». Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМАРыцари теории эфира

Источник: http://bourabai.kz/toe/resistors.htm

Последовательное и параллельное соединение. Применение и схемы

как найти общее напряжение

В электрических цепях элементы могут соединяться по различным схемам, в том числе они имеют последовательное и параллельное соединение.

Последовательное соединение

При таком соединении проводники соединяются друг с другом последовательно, то есть, начало одного проводника будет соединяться с концом другого. Основная особенность данного соединения заключается в том, что все проводники принадлежат одному проводу, нет никаких разветвлений. Через каждый из проводников будет протекать один и тот же электрический ток. Но суммарное напряжение на проводниках будет равняться вместе взятым напряжениям на каждом из них.

Рассмотрим некоторое количество резисторов, соединенных последовательно. Так как нет разветвлений, то количество проходящего заряда через один проводник, будет равно количеству заряда, прошедшего через другой проводник. Силы тока на всех проводниках будут одинаковыми. Это основная особенность данного соединения.

Это соединение можно рассмотреть иначе. Все резисторы можно заменить одним эквивалентным резистором.

Ток на эквивалентном резисторе будет совпадать с общим током, протекающим через все резисторы. Эквивалентное общее напряжение будет складываться из напряжений на каждом резисторе. Это является разностью потенциалов на резисторе.

Если воспользоваться этими правилами и законом Ома, который подходит для каждого резистора, можно доказать, что сопротивление эквивалентного общего резистора будет равно сумме сопротивлений. Следствием первых двух правил будет являться третье правило.

Применение

Последовательное соединение используется, когда нужно целенаправленно включать или выключать какой-либо прибор, выключатель соединяют с ним по последовательной схеме. Например, электрический звонок будет звенеть только тогда, когда он будет последовательно соединен с источником и кнопкой.

Согласно первому правилу, если электрический ток отсутствует хотя бы на одном из проводников, то его не будет и на других проводниках. И наоборот, если ток имеется хотя бы на одном проводнике, то он будет и на всех других проводниках. Также работает карманный фонарик, в котором есть кнопка, батарейка и лампочка.

Все эти элементы необходимо соединить последовательно, так как нужно, чтобы фонарик светил, когда будет нажата кнопка.

Иногда последовательное соединение не приводит к нужным целям. Например, в квартире, где много люстр, лампочек и других устройств, не следует все лампы и устройства соединять последовательно, так как никогда не требуется одновременно включать свет в каждой из комнат квартиры. Для этого последовательное и параллельное соединение рассматривают отдельно, и для подключения осветительных приборов в квартире применяют параллельный вид схемы.

Параллельное соединение

В этом виде схемы все проводники соединяются параллельно друг с другом. Все начала проводников объединены в одну точку, и все концы также соединены вместе. Рассмотрим некоторое количество однородных проводников (резисторов), соединенных по параллельной схеме.

Этот вид соединения является разветвленным. В каждой ветви содержится по одному резистору. Электрический ток, дойдя до точки разветвления, разделяется на каждый резистор, и будет равняться сумме токов на всех сопротивлениях. Напряжение на всех элементах, соединенных параллельно, является одинаковым.

Все резисторы можно заменить одним эквивалентным резистором. Если воспользоваться законом Ома, можно получить выражение сопротивления. Если при последовательном соединении сопротивления складывались, то при параллельном будут складываться величины обратные им, как записано в формуле выше.

Работа тока

Последовательное и параллельное соединение, рассмотренное ранее, было справедливо для величин напряжения, сопротивления и силы тока, являющихся основными. Работа тока определяется по формуле:

А = I х U х t, где А – работа тока, t – время течения по проводнику.

Для определения работы при последовательной схеме соединения, необходимо заменить в первоначальном выражении напряжение. Получаем:

А=I х (U1 + U2) х t

Раскрываем скобки и получаем, что на всей схеме работа определяется суммой на каждой нагрузке.

Точно также рассматриваем параллельную схему соединения. Только меняем уже не напряжение, а силу тока. Получается результат:

А = А1+А2

Мощность тока

При рассмотрении формулы мощности участка цепи снова необходимо пользоваться формулой:

Р=U х I

После аналогичных рассуждений выходит результат, что последовательное и параллельное соединение можно определить следующей формулой мощности:

Р=Р1 + Р2

Другими словами, при любых схемах общая мощность равна сумме всех мощностей в схеме. Этим можно объяснить, что не рекомендуется включать в квартире сразу несколько мощных электрических устройств, так как проводка может не выдержать такой мощности.

Влияние схемы соединения на новогоднюю гирлянду

После перегорания одной лампы в гирлянде можно определить вид схемы соединения. Если схема последовательная, то не будет гореть ни одной лампочки, так как сгоревшая лампочка разрывает общую цепь. Чтобы выяснить, какая именно лампочка сгорела, нужно проверять все подряд. Далее, заменить неисправную лампу, гирлянда будет функционировать.

При применении параллельной схемы соединения гирлянда будет продолжать работать, даже если одна или несколько ламп сгорели, так как цепь не разорвана полностью, а только один небольшой параллельный участок. Для восстановления такой гирлянды достаточно увидеть, какие лампы не горят, и заменить их.

Последовательное и параллельное соединение для конденсаторов

При последовательной схеме возникает такая картина: заряды от положительного полюса источника питания идут только на наружные пластины крайних конденсаторов. Конденсаторы, находящиеся между ними, передают заряд по цепи. Этим объясняется появление на всех пластинах равных зарядов с разными знаками. Исходя из этого, заряд любого конденсатора, соединенного по последовательной схеме, можно выразить такой формулой:

qобщ= q1 = q2 = q3

Для определения напряжения на любом конденсаторе, необходима формула:

U= q/С

Где С — емкость. Суммарное напряжение выражается таким же законом, который подходит для сопротивлений. Поэтому получаем формулу емкости:

С= q/(U1 + U2 + U3)

Чтобы сделать эту формулу проще, можно перевернуть дроби и заменить отношение разности потенциалов к заряду емкости. В результате получаем:

1/С= 1/С1 + 1/С2 + 1/C3

Немного иначе рассчитывается параллельное соединение конденсаторов.

Общий заряд вычисляется как сумма всех зарядов, накопившихся на пластинах всех конденсаторов. А величина напряжения также вычисляется по общим законам. В связи с этим формула суммарной емкости при параллельной схеме соединения выглядит так:

С= (q1 + q2 + q3)/U

Это значение рассчитывается как сумма каждого прибора в схеме:

С=С1 + С2 + С3

Смешанное соединение проводников

В электрической схеме участки цепи могут иметь и последовательное и параллельное соединение, переплетающихся между собой. Но все законы, рассмотренные выше для отдельных видов соединений, справедливы по-прежнему, и используются по этапам.

Сначала нужно мысленно разложить схему на отдельные части. Для лучшего представления ее рисуют на бумаге. Рассмотрим наш пример по изображенной выше схеме.

ЭТО ИНТЕРЕСНО:  Почему при прохождении электрического тока проводник нагревается

Удобнее всего ее изобразить, начиная с точек Б и В. Они расставляются на некотором расстоянии между собой и от края листа бумаги. С левой стороны к точке Б подключается один провод, а справа отходят два провода. Точка В наоборот, слева имеет две ветки, а после точки отходит один провод.

Далее нужно изобразить пространство между точками. По верхнему проводнику расположены 3 сопротивления с условными значениями 2, 3, 4. Снизу будет идти ток с индексом 5. Первые 3 сопротивления включены в схему последовательно, а пятый резистор подключен параллельно.

Остальные два сопротивления (первый и шестой) подключены последовательно с рассматриваемым нами участком Б-В. Поэтому схему дополняем 2-мя прямоугольниками по сторонам от выбранных точек.

Теперь используем формулу расчета сопротивления:

  • Первая формула для последовательного вида соединения.
  • Далее, для параллельной схемы.
  • И окончательно для последовательной схемы.

Аналогичным образом можно разложить на отдельные схемы любую сложную схему, включая соединения не только проводников в виде сопротивлений, но и конденсаторов. Чтобы научиться владеть приемами расчета по разным видам схем, необходимо потренироваться на практике, выполнив несколько заданий.

Похожие темы:

Источник: https://electrosam.ru/glavnaja/jelektrotehnika/raschjoty/posledovatelnoe-i-parallelnoe-soedinenie/

Как рассчитать мощность при последовательном соединении?

как найти общее напряжение

В электрических цепях элементы могут соединяться по различным схемам, в том числе они имеют последовательное и параллельное соединение.

Последовательное и параллельное соединение резисторов

Последовательное соединение – это соединение двух или более резисторов в форме цепи, в которой каждый отдельный резистор соединяется с другим отдельным резистором только в одной точке.

Общее сопротивление Rобщ

При таком соединении, через все резисторы проходит один и тот же электрический ток. Чем больше элементов на данном участке электрической цепи, тем «труднее» току протекать через него. Следовательно, при последовательном соединении резисторов их общее сопротивление увеличивается, и оно равно сумме всех сопротивлений.

Напряжение при последовательном соединении

Напряжение при последовательном соединении распределяется на каждый резистор согласно закону Ома:

Т.е чем большее сопротивление резистора, тем большее напряжение на него падает.

Параллельное соединение резисторов

Параллельное соединение – это соединение, при котором резисторы соединяются между собой обоими контактами. В результате к одной точке (электрическому узлу) может быть присоединено несколько резисторов.

Напряжение при параллельном соединении

Напряжение между точками A и B является как общим напряжением для всего участка цепи, так и напряжением, падающим на каждый резистор в отдельности. Поэтому при параллельном соединении на все резисторы упадет одинаковое напряжение.

Электрический ток при параллельном соединении

Через каждый резистор течет ток, сила которого обратно пропорциональна сопротивлению резистора. Для того чтобы узнать какой ток течет через определенный резистор, можно воспользоваться законом Ома:

Чем характеризуется последовательное и параллельное соединение. Параллельное и последовательное соединение сопротивлений

Всем доброго времени суток. В прошлой статье я рассмотрел , применительно к электрическим цепям, содержащие источники энергии.

Но в основе анализа и проектирования электронных схем вместе с законом Ома лежат также законы баланса , называемым первым законом Кирхгофа, и баланса напряжения на участках цепи, называемым вторым законом Кирхгофа, которые рассмотрим в данной статье.

Но для начала выясним, как соединяются между собой приёмники энергии и какие при этом взаимоотношения между токами, напряжениями и .

Приемники электрической энергии можно соединить между собой тремя различными способами: последовательно, параллельно или смешано (последовательно — параллельно). Вначале рассмотрим последовательный способ соединения, при котором конец одного приемника соединяют с началом второго приемника, а конец второго приемника – с началом третьего и так далее. На рисунке ниже показано последовательное соединение приемников энергии с их подключением к источнику энергии

Пример последовательного подключения приемников энергии.

В данном случае цепь состоит из трёх последовательных приемников энергии с сопротивлением R1, R2, R3 подсоединенных к источнику энергии с U. Через цепь протекает электрический ток силой I, то есть, напряжение на каждом сопротивлении будет равняться произведению силы тока и сопротивления

Таким образом, падение напряжения на последовательно соединённых сопротивлениях пропорциональны величинам этих сопротивлений.

Из вышесказанного вытекает правило эквивалентного последовательного сопротивления, которое гласит, что последовательно соединённые сопротивления можно представить эквивалентным последовательным сопротивлением величина, которого равна сумме последовательно соединённых сопротивлений. Это зависимость представлена следующими соотношениями

где R – эквивалентное последовательное сопротивление.

Применение последовательного соединения

Основным назначением последовательного соединения приемников энергии является обеспечение требуемого напряжения меньше, чем напряжение источника энергии. Одними из таких применений является делитель напряжения и потенциометр

Делитель напряжения (слева) и потенциометр (справа).

В качестве делителей напряжения используют последовательно соединённые резисторы, в данном случае R1 и R2, которые делят напряжение источника энергии на две части U1 и U2. Напряжения U1 и U2 можно использовать для работы разных приемников энергии.

Довольно часто используют регулируемый делитель напряжения, в качестве которого применяют переменный резистор R. Суммарное сопротивление, которого делится на две части с помощью подвижного контакта, и таким образом можно плавно изменять напряжение U2 на приемнике энергии.

Ещё одним способом соединения приемников электрической энергии является параллельное соединение, которое характеризуется тем, что к одним и тем же узлам электрической цепи присоединены несколько преемников энергии. Пример такого соединения показан на рисунке ниже

Пример параллельного соединения приемников энергии.

Электрическая цепь на рисунке состоит из трёх параллельных ветвей с сопротивлениями нагрузки R1, R2 и R3. Цепь подключена к источнику энергии с напряжением U, через цепь протекает электрический ток с силой I. Таким образом, через каждую ветвь протекает ток равный отношению напряжения к сопротивлению каждой ветви

Так как все ветви цепи находятся под одним напряжением U, то токи приемников энергии обратно пропорциональны сопротивлениям этих приемников, а следовательно параллельно соединённые приемники энергии можно заметь одним приемником энергии с соответствующим эквивалентным сопротивлением, согласно следующих выражений

Таким образом, при параллельном соединении эквивалентное сопротивление всегда меньше самого малого из параллельно включенных сопротивлений.

Смешанное соединение приемников энергии

Наиболее широко распространено смешанное соединение приемников электрической энергии. Данной соединение представляет собой сочетание последовательно и параллельно соединенных элементов.

Общей формулы для расчёта данного вида соединений не существует, поэтому в каждом отдельном случае необходимо выделять участки цепи, где присутствует только лишь один вид соединения приемников – последовательное или параллельное.

Затем по формулам эквивалентных сопротивлений постепенно упрощать данные участи и в конечном итоге приводить их к простейшему виду с одним сопротивлением, при этом токи и напряжения вычислять по закону Ома. На рисунке ниже представлен пример смешанного соединения приемников энергии

Пример смешанного соединения приемников энергии.

В качестве примера рассчитаем токи и напряжения на всех участках цепи. Для начала определим эквивалентное сопротивление цепи. Выделим два участка с параллельным соединением приемников энергии. Это R1||R2 и R3||R4||R5. Тогда их эквивалентное сопротивление будет иметь вид

В результате получили цепь из двух последовательных приемников энергии R 12 R 345 эквивалентное сопротивление и ток, протекающий через них, составит

Тогда падение напряжения по участкам составит

Тогда токи, протекающие через каждый приемник энергии, составят

Как я уже упоминал, законы Кирхгофа вместе с законом Ома являются основными при анализе и расчётах электрических цепей. Закон Ома был подробно рассмотрен в двух предыдущих статьях, теперь настала очередь для законов Кирхгофа. Их всего два, первый описывает соотношения токов в электрических цепях, а второй – соотношение ЭДС и напряжениями в контуре. Начнём с первого.

Первый закон Кирхгофа гласит, что алгебраическая сумма токов в узле равна нулю. Описывается это следующим выражением

где ∑ — обозначает алгебраическую сумму.

Слово «алгебраическая» означает, что токи необходимо брать с учётом знака, то есть направления втекания. Таким образом, всем токам, которые втекают в узел, присваивается положительный знак, а которые вытекают из узла – соответственно отрицательный. Рисунок ниже иллюстрирует первый закон Кирхгофа

Изображение первого закона Кирхгофа.

На рисунке изображен узел, в который со стороны сопротивления R1 втекает ток, а со стороны сопротивлений R2, R3, R4 соответственно вытекает ток, тогда уравнение токов для данного участка цепи будет иметь вид

Первый закон Кирхгофа применяется не только к узлам, но и к любому контуру или части электрической цепи. Например, когда я говорил о параллельном соединении приемников энергии, где сумма токов через R1, R2 и R3 равна втекающему току I.

Как говорилось выше, второй закон Кирхгофа определяет соотношение между ЭДС и напряжениями в замкнутом контуре и звучит следующим образом: алгебраическая сумма ЭДС в любом контуре цепи равна алгебраической сумме падений напряжений на элементах этого контура. Второй закон Кирхгофа определяется следующим выражением

В качестве примера рассмотрим ниже следующую схему, содержащую некоторый контур

Схема, иллюстрирующая второй закон Кирхгофа.

Для начала необходимо определится с направлением обхода контура. В принципе можно выбрать как по ходу часовой стрелки, так и против хода часовой стрелки. Я выберу первый вариант, то есть элементы будут считаться в следующем порядке E1R1R2R3E2, таким образом, уравнение по второму закону Кирхгофа будет иметь следующий вид

Второй закон Кирхгофа применяется не только к цепям постоянного тока, но и к цепям переменного тока и к нелинейным цепям.
В следующей статье я рассмотрю основные способы расчёта сложных цепей с использованием закона Ома и законов Кирхгофа.

Теория это хорошо, но без практического применения это просто слова.

Здравствуйте.

Сегодня мы будем рассматривать последовательное и параллельное соединение сопротивлений. Тема очень интересная и касающаяся нашей повседневной жизни. Как правило, именно с этой темы начинается любого объекта. В прочем, обо всём по порядку.

Для начала разберемся почему «сопротивление». Синонимами этого определения могут быть: нагрузка или резистор. Поскольку мы с вами говорим об электрической сети, стало быть, по проводам протекает ток. Как бы хорошо не протекал ток по проводам, и из каких бы материалов не изготавливали провода, все равно на ток действует, своего рода сила трения.

То есть, ток встречает некое сопротивление и в зависимости от материала, поперечного сечения и длины провода это сопротивление сильнее или слабее. Так, в русском языке был принят термин «сопротивление», обозначающий некий элемент цепи, создающий ощутимое препятствие для прохождения тока, а позже появился народный термин «нагрузка», то есть, нагружающий элемент, а из английского языка пришел термин «резистор». С понятиями разобрались, теперь можно приступать к практике.

А начнём, пожалуй, с параллельного соединения сопротивлений просто потому, что мы им пользуемся практически повсеместно.

Параллельное соединение сопротивлений

Источник: https://maintorrent.ru/chem-harakterizuetsya-posledovatelnoe-i-parallelnoe/

Последовательное и параллельное соединения проводников – FIZI4KA

ОГЭ 2018 по физике ›

1. Потребители электрической энергии: электрические лампочки, резисторы и пр. — могут по-разному соединяться друг с другом в электрической цепи. Существует два основных типа соединения проводников: последовательное и параллельное. При последовательном соединении проводников конец одного проводника соединяется с началом другого проводника, а его конец — с началом третьего и т.д. (рис. 85).

Примером последовательного соединения проводников может служить соединение электрических лампочек в ёлочной гирлянде.

При последовательном соединении проводников ток проходит через все лампочки, при этом через поперечное сечение каждого проводника в единицу времени проходит одинаковый заряд, т.е. заряд не скапливается ни в какой части проводника. Поэтому при последовательном соединении проводников сила тока в любом участке цепи одинакова: ​\( I_1=I_2=I \)​.

Общее сопротивление последовательно соединённых проводников равно сумме их сопротивлений: ​\( R_1=R_2=R \)​. Это следует из того, что при последовательном соединении проводников их общая длина увеличивается, она больше, чем длина каждого отдельного проводника, соответственно увеличивается и сопротивление проводников.

По закону Ома напряжение на каждом проводнике равно: ​\( U_1=IR_1 \)​, ​\( U_2=IR_2 \)​, а общее напряжение равно ​\( U=I(R_1+R_2) \)​. Поскольку сила тока во всех проводниках одинакова, а общее сопротивление равно сумме сопротивлений проводников, то полное напряжение на последовательно соединённых проводниках равно сумме напряжений на каждом проводнике: ​\( U=U_1+U_2 \)​.

Из приведённых равенств следует, что последовательное соединение проводников используется в том случае, если напряжение, на которое рассчитаны потребители электрической энергии, меньше общего напряжения в цепи.

2. Примером параллельного соединения проводников служит соединение потребителей электрической энергии в квартире. Так, электрические лампочки, чайник, утюг и пр. включаются параллельно.

ЭТО ИНТЕРЕСНО:  Твч что это такое

При параллельном соединении проводников все проводники одним своим концом присоединяются к одной точке цепи (А), а вторым концом к другой точке цепи (В) (рис. 86).

Поэтому вольтметр, подключенный к этим точкам, покажет напряжение как на проводнике 1, так и на проводнике 2. Таким образом, напряжение на концах всех параллельно соединённых проводников одно и то же: ​\( U_1=U_2=U \)​.

При параллельном соединении проводников электрическая цепь разветвляется, в данном случае в точке В. Поэтому часть общего заряда проходит через один проводник, а часть — через другой. Следовательно при параллельном соединении проводников сила тока в неразветвлённой части цепи равна сумме силы тока в отдельных проводниках: ​\( I=I_1+I_2 \)​.

В соответствии с законом Ома ​\( I=\frac{U}{R} \)​, \( I_1=\frac{U_1}{R_1} \), \( I_2=\frac{U_2}{R_2} \). Отсюда следует: ​\( \frac{U}{R}=\frac{U_1}{R_1}+\frac{U_2}{R_2} \)​. Так как ​\( U_1=U_2=U \)​, \( \frac{1}{R}=\frac{1}{R_1}+\frac{1}{R_2} \). Величина, обратная общему сопротивлению параллельно соединенных проводников, равна сумме величин, обратных сопротивлению каждого проводника.

При параллельном соединении проводников их общее сопротивление меньше, чем сопротивление каждого проводника. Действительно, если параллельно соединены два проводника, имеющие одинаковое сопротивление ​\( r \)​, то их общее сопротивление равно: ​\( R=r/2 \)​. Это объясняется тем, что при параллельном соединении проводников как бы увеличивается площадь их поперечного сечения, соответственно уменьшается сопротивление.

Из приведённых формул понятно, почему потребители электрической энергии включаются параллельно: они все рассчитаны на определённое одинаковое напряжение, которое в квартирах равно 220 В. Зная сопротивление каждого потребителя, можно рассчитать силу тока в каждом из них и соответствие суммарной силы тока предельно допустимой силе тока.

  • Примеры заданий
  • Ответы

Часть 1

1. На рисунке изображёна схема участка электрической цепи АВ. В эту цепь параллельно включены два резистора сопротивлением ​\( R_1 \)​ и ​\( R_2 \)​. Напряжения на резисторах соответственно ​\( U_1 \)​ и ​\( U_2 \)​.

По какой из формул можно определить напряжение U на участке АВ?

1) ​\( U=U_1+U_2 \)​
2) ​\( U=U_1-U_2 \)​
3) ​\( U=U_1=U_2 \)​
4) ​\( U=\frac{U_1U_2}{U_1+U_2} \)​

2. На рисунке изображёна схема электрической цепи, содержащая два параллельно включённых резистора сопротивлением ​\( R_1 \)​ и ​\( R_2 \)​. Какое из приведённых ниже соотношений справедливо для такого соединения резисторов?

1) ​\( I=I_1=I_2 \)​
2) \( I=I_1+I_2 \)
3) \( U=U_1+U_2 \)
4) \( R=R_1+R_2 \)

3. На рисунке изображена схема электрической цепи. В эту цепь последовательно включены два резистора сопротивлением R} и R2. Какое из приведённых ниже соотношений справедливо для такого соединения резисторов?

1) ​\( U=U_1+U_2 \)​
2) \( I=I_1+I_2 \)
3) \( U=U_1=U_2 \)
4) \( R=\frac{R_1R_2}{R_1+R_2} \)

4. На рисунке изображена схема электрической цепи. В эту цепь последовательно включены два резистора сопротивлением ​\( R_1 \)​ и ​\( R_2 \)​. Какое из приведённых ниже соотношений справедливо для такого соединения резисторов?

1) ​\( U=U_1=U_2 \)​
2) \( I=I_1+I_2 \)
3) \( I=I_1=I_2 \)
4) \( R=\frac{R_1R_2}{R_1+R_2} \)

5. На рисунке изображена схема электрической цепи. В эту цепь параллельно включены два одинаковых резистора сопротивлением ​\( R_1 \)​. По какой из формул можно определить общее сопротивление цепи ​\( R \)​?

1) ​\( R=R_1{}2 \)​
2) ​\( R=2R_1 \)​
3) ​\( R=\frac{R_1}{2} \)​
4) ​\( R=\sqrt{R_1} \)​

6. Общее сопротивление участка цепи, изображённого на рисунке, равно 9 Ом. Сопротивления резисторов ​\( R_1 \)​ и ​\( R_2 \)​ равны. Чему равно сопротивление каждого резистора?

1) 81 Ом 2) 18 Ом 3) 9 Ом

4) 4,5 Ом

7. Чему равно сопротивление участка цепи, содержащего три последовательно соединенных резистора сопротивлением по 9 Ом каждый?

1) 1/3 Ом 2) 3 Ом 3) 9 Ом

4) 27 Ом

8. Чему равно общее сопротивление участка цепи, изображённого на рисунке, если ​\( R_1 \)​ = 1 Ом, ​\( R_2 \)​ = 10 Ом, ​\( R_3 \)​ = 10 Ом, ​\( R_4 \)​ = 5 Ом?

1) 9 Ом 2) 11 Ом 3) 16 Ом

4) 26 Ом

9. Чему равно общее сопротивление участка цепи, изображённого на рисунке, если \( R_1 \) = 1 Ом, \( R_2 \) = 3 Ом, \( R_3 \) = 10 Ом, \( R_4 \) = 10 Ом?

1) 9 Ом 2) 10 Ом 3) 14 Ом

4) 24 Ом

10. Если ползунок реостата (см. схему) переместить влево, то сила тока

1) в резисторе ​\( R_1 \)​ уменьшится, а в резисторе ​\( R_2 \)​ увеличится 2) увеличится в обоих резисторах

3) в резисторе ​\( R_1 \)​ увеличится, а в резисторе ​\( R_2 \)​ уменьшится

4) уменьшится в обоих резисторах

11. На рисунке изображена электрическая цепь, состоящая из источника тока, резистора и реостата. Как изменяются при передвижении ползунка реостата вправо его сопротивление, сила тока в цепи и напряжение на резисторе 1?

Для каждой физической величины определите соответствующий характер изменения. Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

ФИЗИЧЕСКАЯ ВЕЛИЧИНА A) сопротивление реостата 2 Б) сила тока в цепи

B) напряжение на резисторе 1

ХАРАКТЕР ИЗМЕНЕНИЯ 1) увеличивается 2) уменьшается

3) не изменяется

12. Установите соответствие между физическими величинами и правильной электрической схемой для измерения этих величин при последовательном соединении двух резисторов ​\( R_1 \)​ и \( R_2 \). Запишите в таблицу выбранные цифры под соответствующими буквами. Цифры в ответе могут повторяться.

ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ
A) сила тока в резисторе \( R_1 \)​ и \( R_2 \)
Б) напряжение на резисторе \( R_2 \)
B) общее напряжение на резисторах \( R_1 \)​ и \( R_2 \)

Часть 2

13. Три резистора соединены, как показано на рисунке. Сопротивления резисторов ​\( R_1 \)​ = 10 Ом, \( R_2 \) = 5 Ом, \( R_3 \) = 5 Ом. Каково напряжение на резисторе 1, если амперметр показывает силу тока 2 А?

Ответы

Источник: https://fizi4ka.ru/ogje-2018-po-fizike/posledovatelnoe-i-parallelnoe-soedinenija-provodnikov.html

Решение задач по теме:

Под со­еди­не­ни­ем про­вод­ни­ков под­ра­зу­ме­ва­ет­ся со­еди­не­ние ре­зи­сто­ров – при­бо­ров, сде­лан­ных на ос­но­ве со­про­тив­ле­ния про­вод­ни­ков. На преды­ду­щих уро­ках были рас­смот­ре­ны па­рал­лель­ное и по­сле­до­ва­тель­ное со­еди­не­ния. На дан­ном уроке будут рас­смот­ре­ны за­да­чи на сме­шан­ное со­еди­не­ние про­вод­ни­ков, то есть когда в цепи при­сут­ству­ет и по­сле­до­ва­тель­ное, и па­рал­лель­ное со­еди­не­ние.

Для ре­ше­ния задач сна­ча­ла рас­смот­рим фор­му­лы для связи раз­лич­ных ве­ли­чин при па­рал­лель­ном и по­сле­до­ва­тель­ном со­еди­не­ни­ях:

Если про­вод­ни­ки со­еди­не­ны по­сле­до­ва­тель­но, то сила тока в них оди­на­ко­ва и равна силе тока в цепи. При этом общее на­пря­же­ние в цепи будет со­сто­ять из суммы на­пря­же­ний на каж­дом про­вод­ни­ке. А если го­во­рить о со­про­тив­ле­нии этого участ­ка цепи, в ко­то­ром про­вод­ни­ки со­еди­не­ны по­сле­до­ва­тель­но, то оно равно сумме со­про­тив­ле­ний про­вод­ни­ков.

В по­сле­до­ва­тель­ном со­еди­не­нии все по-дру­го­му. Сила тока в каж­дой ветке этой цепи будет раз­лич­ной, при этом общая сила тока в цепи будет вы­чис­лять­ся как сумма сил токов в про­вод­ни­ках. На­пря­же­ние на про­вод­ни­ках, со­еди­нен­ных по­сле­до­ва­тель­но, будет оди­на­ко­вым. Общее со­про­тив­ле­ние этого участ­ка цепи, так на­зы­ва­е­мое «эк­ви­ва­лент­ное со­про­тив­ле­ние» R, будет вы­чис­лять­ся по сле­ду­ю­щей фор­му­ле: .

Также стоит от­ме­тить, что па­рал­лель­ное со­еди­не­ние обыч­но при­ме­ня­ет­ся при вклю­че­нии бы­то­вых при­бо­ров, а по­сле­до­ва­тель­ное – для того, чтобы со­здать длин­ную нераз­ветв­лен­ную цепь.

Задача №1

Рас­смот­рим сле­ду­ю­щую за­да­чу. Уча­сток цепи со­сто­ит из двух по­сле­до­ва­тель­но со­еди­нен­ных со­про­тив­ле­ний, каж­дое из ко­то­рых равно 1 Ом. К этим двум ре­зи­сто­рам па­рал­лель­но под­клю­ча­ют еще одно со­про­тив­ле­ние, зна­че­ние ко­то­ро­го со­став­ля­ет 2 Ом. Всю эту цепь под­клю­ча­ют к ис­точ­ни­ку тока, ко­то­рый со­зда­ет на кон­цах дан­но­го со­еди­не­ния на­пря­же­ние 2,4 В. Необ­хо­ди­мо опре­де­лить силу тока во всей элек­три­че­ской цепи (рис. 1).

Рис. 1. Усло­вия и ри­су­нок за­да­чи № 1

Как видим, ре­зи­сто­ры R1 и R2 со­еди­не­ны по­сле­до­ва­тель­но, ре­зи­стор R3 – па­рал­лель­но к ним. Ис­точ­ник дает на­пря­же­ние 2,4 В, со­от­вет­ствен­но, на участ­ке АВ на­пря­же­ние будет также 2,4 В. Сила тока, ко­то­рую тре­бу­ет­ся найти, – это сила тока, про­те­ка­ю­щая через ам­пер­метр А.

Такое со­еди­не­ние про­вод­ни­ков на­зы­ва­ет­ся нераз­ветв­лен­ным. В про­мыш­лен­но­сти обыч­но из­го­тав­ли­ва­ет­ся набор ре­зи­сто­ров с четко опре­де­лен­ны­ми со­про­тив­ле­ни­я­ми, но для экс­пе­ри­мен­тов могут по­на­до­бить­ся любые раз­лич­ные со­про­тив­ле­ния. Тогда с по­мо­щью таких схем можно со­зда­вать нуж­ное со­про­тив­ле­ние для экс­пе­ри­мен­та или при­бо­ра.

Далее тре­бу­ет­ся опре­де­лить эк­ви­ва­лент­ное со­про­тив­ле­ние нераз­ветв­лен­ной части. Сна­ча­ла по­смот­рим, чему равно со­про­тив­ле­ние R’ участ­ка цепи АВ, ко­то­рый со­дер­жит толь­ко ре­зи­сто­ры R1 и R2. Они со­еди­не­ны по­сле­до­ва­тель­но, тогда R′=R1+R2=2 [Ом]. Те­перь можно пе­ре­ри­со­вать элек­три­че­скую цепь, за­ме­нив со­про­тив­ле­ния R1 и R2 эк­ви­ва­лент­ным им со­про­тив­ле­ни­ем R’ (рис. 2).

Рис. 2. Пер­вая за­ме­на эк­ви­ва­лент­ным со­про­тив­ле­ни­ем

Те­перь можно ска­зать, что уча­сток АВ вклю­ча­ет в себя не три, а два со­про­тив­ле­ния: R3 и R’. Эти два со­про­тив­ле­ния со­еди­не­ны па­рал­лель­но, со­от­вет­ствен­но, можно найти общее со­про­тив­ле­ние элек­три­че­ской цепи по фор­му­ле . Вы­ра­зив R и под­ста­вив зна­че­ния , по­лу­ча­ем:

Стоит от­ме­тить, что со­про­тив­ле­ния были со­еди­не­ны, но общее со­про­тив­ле­ние по­лу­чи­лось все равно рав­ным 1 Ом. Те­перь элек­три­че­скую цепь можно за­ме­нить сле­ду­ю­щей (рис. 3):

Рис. 3. Вто­рая за­ме­на эк­ви­ва­лент­ным со­про­тив­ле­ни­ем

На рис. 3 со­про­тив­ле­ние R=1 Ом на­зы­ва­ет­ся эк­ви­ва­лент­ным со­про­тив­ле­ни­ем, по­сколь­ку три со­про­тив­ле­ния были за­ме­не­ны на одно. Чтобы рас­счи­тать силу тока в цепи, надо ис­поль­зо­вать закон Ома для участ­ка цепи: . На­пря­же­ние на со­про­тив­ле­нии R – это на­пря­же­ние на участ­ке АВ (Рис. 1), ко­то­рое, в свою оче­редь, равно 2,4.Тогда . Это и будет зна­че­ние силы тока в элек­три­че­ской цепи, ко­то­рое по­ка­жет ам­пер­метр.

Задача №2

Те­перь рас­смот­рим за­да­чу, в ко­то­рой также будет три со­про­тив­ле­ния, но со­еди­не­ны они будут по-дру­го­му (рис. 4):

Рис. 4. Усло­вие за­да­чи № 2

Два со­про­тив­ле­ния R1 и R2 со­еди­не­ны па­рал­лель­но (R1=R2=2 Ом), к ним еще по­сле­до­ва­тель­но при­со­еди­не­но со­про­тив­ле­ние R3=1 Ом. Ам­пер­метр по­ка­зы­ва­ет силу тока в цепи, рав­ную I=0,5 А. Тре­бу­ет­ся опре­де­лить на­пря­же­ние на кон­цах участ­ка этой цепи, то есть на участ­ке АВ.

Для на­ча­ла опре­де­лим со­про­тив­ле­ние участ­ка цепи, со­дер­жа­ще­го со­про­тив­ле­ния R1 и R2. Эти два со­про­тив­ле­ния со­еди­не­ны па­рал­лель­но, зна­чит, их эк­ви­ва­лент­ное со­про­тив­ле­ние R’ можно найти из фор­му­лы . Под­став­ляя зна­че­ния, по­лу­ча­ем:

Те­перь можно ска­зать, что цепь вклю­ча­ет в себя толь­ко два со­про­тив­ле­ния: R’и R3, ко­то­рые со­еди­не­ны по­сле­до­ва­тель­но.

Рис. 5. За­ме­на па­рал­лель­но­го со­еди­не­ния эк­ви­ва­лент­ным со­про­тив­ле­ни­ем

В за­да­че тре­бу­ет­ся опре­де­лить на­пря­же­ние. Для этого ис­поль­зу­ет­ся при­бор, ко­то­рый на­зы­ва­ет­ся вольт­метр. В цепь он вклю­ча­ет­ся па­рал­лель­но. И рас­смот­рим уча­сток цепи, в ко­то­ром все три со­про­тив­ле­ния уже за­ме­не­ны эк­ви­ва­лент­ным.

Рис. 6. Вклю­че­ние вольт­мет­ра в цепь

Вольт­метр вклю­чен в месте, со­от­вет­ству­ю­щем участ­ку АВ на рис. 4. Со­от­вет­ствен­но, он из­ме­ря­ет на­пря­же­ние на это участ­ке цепи. Чтобы найти зна­че­ния этого на­пря­же­ния, тре­бу­ет­ся сна­ча­ла найти эк­ви­ва­лент­ное со­про­тив­ле­ние. Со­про­тив­ле­ния R’ и R3 со­еди­не­ны по­сле­до­ва­тель­но (рис. 5), зна­чит, эк­ви­ва­лент­ное со­про­тив­ле­ние опре­де­ля­ет­ся по фор­му­ле:

Те­перь из за­ко­на Ома для участ­ка цепи можно найти на­пря­же­ние:

Зна­чит, вольт­метр дол­жен будет по­ка­зать зна­че­ния на­пря­же­ния в 1 В.

Расчет более сложных цепей

На уроке были рас­смот­ре­ны со­еди­не­ния толь­ко трех со­про­тив­ле­ний, когда они были по­сле­до­ва­тель­ные, к ним па­рал­лель­но под­клю­ча­ет­ся тре­тий, или когда два со­еди­не­ны па­рал­лель­но, а к ним по­сле­до­ва­тель­но под­клю­ча­ют тре­тье со­про­тив­ле­ние. Но ре­аль­ные схемы зна­чи­тель­но слож­нее. Они со­дер­жат огром­ное ко­ли­че­ство раз­лич­ных эле­мен­тов, со­про­тив­ле­ний, по­это­му име­ют­ся до­ста­точ­но слож­ные ме­то­ды рас­че­тов элек­три­че­ских цепей.

Впер­вые рас­че­та­ми таких слож­ных элек­три­че­ских цепей оза­да­чи­лись уче­ные при­бли­зи­тель­но в XIX веке, и по­яви­лись новые пра­ви­ла, ко­то­рые ис­поль­зу­ют­ся и по сей день. Немец­кий уче­ный Кирх­гоф раз­ра­бо­тал воз­мож­ность рас­че­та элек­три­че­ских слож­ных цепей, по­это­му пра­ви­ла, ко­то­рые ис­поль­зу­ют для слож­ных цепей, на­зы­ва­ют­ся «пра­ви­ла­ми Кирх­го­фа».

На сле­ду­ю­щих уро­ках будет рас­смот­ре­но по­ня­тие мощ­но­сти и ра­бо­ты силы тока.

Вопросы к конспектам

В каком слу­чае эк­ви­ва­лент­ное со­про­тив­ле­ние будет боль­ше: если три про­вод­ни­ка с со­про­тив­ле­ни­я­ми 1 Ом каж­дый со­еди­нить па­рал­лель­но или по­сле­до­ва­тель­но?

Два со­про­тив­ле­ния R1=1 Ом и R2= 2 Ом со­еди­не­ны по­сле­до­ва­тель­но, к ним па­рал­лель­но при­со­еди­не­но со­про­тив­ле­ние 3 Ом. Чему равно эк­ви­ва­лент­ное со­про­тив­ле­ние?

Сколь­ко раз­лич­ных цепей можно со­ста­вить из трех ре­зи­сто­ров с со­про­тив­ле­ни­я­ми 1 Ом каж­дый так, чтоб их эк­ви­ва­лент­ные со­про­тив­ле­ния была раз­лич­ны­ми?

ЭТО ИНТЕРЕСНО:  Что такое альтернативная энергетика

Источник: https://100ballov.kz/mod/page/view.php?id=1134

Соединение конденсаторов — Основы электроники

В электрических цепях применяются различные способы соединения конденсаторов. Соединение конденсаторов может производиться: последовательно, параллельно и последовательно-параллельно (последнее иногда называют смешанное соединение конденсаторов). Существующие виды соединения конденсаторов показаны на рисунке 1.

Рисунок 1. Способы соединения конденсаторов.

Параллельное соединение конденсаторов

Если группа конденсаторов включена в цепь таким обра­зом, что к точкам включения непосредственно присоединены пластины всех конденсаторов, то такое соединение называется параллельным соединением конденсаторов (рисунок 2.).

Рисунок 2. Параллельное соединение конденсаторов.

При заряде группы конденсаторов, соединенных параллель­но, между пластинами всех конденсаторов будет одна и та же разность потенциалов, так как все они заряжаются от одного и того же источника тока.

Общее же количе­ство электричества на всех конденсаторах будет равно сумме количеств электричества, помещающихся на каждом из кон­денсаторов, так как заряд каждого их конденсаторов проис­ходит независимо от заряда других конденсаторов данной группы.

Исходя из этого, всю систему параллельно соединен­ных конденсаторов можно рассматривать как один эквива­лентный (равноценный) конденсатор. Тогда общая емкость конденсаторов при параллельном соединении равна сумме емкостей всех соединенных конденсаторов.

Обозначим суммарную емкость соединенных в батарею конденсаторов бук­вой Собщ, емкость первого конденсатора С1 емкость второго С2 и емкость третьего С3. Тогда для параллельного соединения конденсаторов будет справедлива следующая формула:

Последний знак + и многоточие указывают на то, что этой формулой можно пользоваться при четырех, пяти и во­обще при любом числе конденсаторов.

Последовательное соединение конденсаторов

Если же соединение конденсаторов в батарею производится в виде цепочки и к точкам включения в цепь непосредственно присоединены пластины только первого и последнего конденсаторов, то такое соединение конденсаторов называется последо­вательным (рисунок 3).

Рисунок 2. Последовательное соединение конденсаторов.

При последовательном соединении все конденса­торы заряжаются одинаковым количеством электричества, так как непосредственно от источника тока заряжаются только крайние пластины (1 и 6), а остальные пластины (2, 3, 4 и 5) заря­жаются через влияние. При этом заряд пла­стины 2 будет равен по величине и противо­положен по знаку за­ряду пластины 1, заряд пластины 3 будет равен по величине и противоположен по знаку заряду пла­стины 2 и т. д.

Напряжения на различных конденсаторах будут, вообще говоря, различными, так как для заряда одним и тем же количеством электричества конденсаторов различной емкости всегда требуются различные напряжения. Чем меньше емкость конденсатора, тем большее напряжение необходимо для того, чтобы зарядить этот конденсатор требуемым количеством электричества, и наоборот.

Таким образом, при заряде группы конденсаторов, соединенных последовательно, на конденсаторах малой емкости напряжения будут больше, а на конденсаторах большой емкости — меньше.

Аналогично предыдущему случаю можно рассматривать всю группу конденсаторов, соединенных последовательно, как один эквивалентный конденсатор, между пластинами которого существует напряжение, равное сумме напряжений на всех конденсаторах группы, а заряд которого равен заряду любого из конденсаторов группы.

Возьмем самый маленький конденсатор в группе. На нем должно быть самое большое напряжение. Но напряжение на этом конденсаторе составляет только часть общего напряже­ния, существующего на всей группе конденсаторов. Напря­жение на всей группе больше напряжения на конденсаторе, имеющем самую малую емкость. А отсюда непосредственно следует, что общая емкость группы конденсаторов, соединен­ных последовательно, меньше емкости самого малого конден­сатора в группе.

Для вычисления общей емкости при последовательном со­единении конденсаторов удобнее всего пользоваться следую­щей формулой:

Для частного случая двух последовательно соединенных конденсаторов формула для вычисления их общей емкости будет иметь вид:

Последовательно-параллельное (смешанное) соединение конденсаторов

Последовательно-параллельным соединением конденсаторов называется цепь имеющая в своем составе участки, как с параллельным, так и с последовательным соединением конденсаторов.

На рисунке 4 приведен пример участка цепи со смешанным соединением конденсаторов.

Рисунок 4. Последовательно-параллельное соединение конденсаторов.

При расчете общей емкости такого участка цепи с последовательно-параллельным соединением конденсаторов этот участок разбивают на простейшие участки, состоящие только из групп с последовательным или параллельным соединением конденсаторов. Дальше алгоритм расчета имеет вид:

1. Определяют эквивалентную емкость участков с последовательным соединением конденсаторов.

2. Если эти участки содержат последовательно соединенные конденсаторы, то сначала вычисляют их емкость.

3. После расчета эквивалентных емкостей конденсаторов перерисовывают схему. Обычно получается цепь из последовательно соединенных эквивалентных конденсаторов.

4. Рассчитывают емкость полученной схемы.

Один из примеров расчета емкости при смешанном соединении конденсаторов приведен на рисунке 5.

Рисунок 5. Пример расчета последовательно-параллельного соединения конденсаторов.

Подробнее о расчетах соединения конденсаторов можно узнать в мультимедийном учебнике по основам электротехники и электроники:

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Источник: http://www.sxemotehnika.ru/soedinenie-kondensatorov.html

Как найти силу тока в цепи

Одной из основных характеристик электрической цепи является сила тока. Она измеряется в амперах и определяет нагрузку на токопроводящие провода, шины или дорожки плат. Эта величина отражает количество электричества, которое протекло в проводнике за единицу времени.

Определить её можно несколькими способами в зависимости от известных вам данных. Соответственно студенты и начинающие электрики из-за этого часто сталкиваются с проблемами при решении учебных заданий или практических ситуаций.

В этой статье мы и расскажем, как найти силу тока через мощность и напряжение или сопротивление.

Если известна мощность и напряжение

Допустим вам нужно найти силу тока в цепи, при этом вам известны только напряжение и потребляемая мощность. Тогда чтобы её определить без сопротивления воспользуйтесь формулой:

P=UI

После несложных мы получаем формулу для вычислений

I=P/U

Следует отметить, что такое выражение справедливо для цепей постоянного тока. Но при расчётах, например, для электродвигателя учитывают его полную мощность или косинус Фи. Тогда для трёхфазного двигателя его можно рассчитать так:

Находим P с учетом КПД, обычно он лежит в пределах 0,75-0,88:

Р1 = Р2/η

Здесь P2 – активная полезная мощность на валу, η – КПД, оба этих параметра обычно указывают на шильдике.

Находим полную мощность с учетом cosФ (он также указывается на шильдике):

S = P1/cosφ

Определяем потребляемый ток по формуле:

Iном = S/(1,73·U)

Здесь 1,73 – корень из 3 (используется для расчетов трёхфазной цепи), U – напряжение, зависит от включения двигателя (треугольник или звезда) и количества вольт в сети (220, 380, 660 и т.д.). Хотя в нашей стране чаще всего встречается 380В.

Если известно напряжение или мощность и сопротивление

Но встречаются задачи, когда вам известно напряжение на участке цепи и величина нагрузки, тогда чтобы найти силу тока без мощности воспользуйтесь законом Ома, с его помощью проводим расчёт силы тока через сопротивление и напряжение.

I=U/R

Но иногда случается так, что нужно определить силу тока без напряжения, то есть когда вам известна только мощность цепи и её сопротивление. В этом случае:

P=UI

При этом согласно тому же закону Ома:

U=IR

То:

 P=I2*R

Значит расчёт проводим по формуле:

I2=P/R

Или возьмем выражение в правой части выражения под корень:

I=(P/R)1/2

Если известно ЭДС, внутреннее сопротивление и нагрузка

Ко студенческим задачам с подвохом можно отнести случаи, когда вам дают величину ЭДС и внутреннее сопротивление источника питания. В этом случае вы можете определить силу тока в схеме по закону Ома для полной цепи:

I=E/(R+r)

Здесь E – ЭДС, r – внутреннее сопротивление источника питания, R – нагрузки.

Закон Джоуля-Ленца

Еще одним заданием, которое может ввести в ступор даже более-менее опытного студента – это определить силу тока, если известно время, сопротивление и количество выделенного тепла проводником. Для этого вспомним закон Джоуля-Ленца.

Его формула выглядит так:

Q=I2Rt

Тогда расчет проводите так:

I2=QRt

Или внесите правую часть уравнения под корень:

I=(Q/Rt)1/2

Несколько примеров

В качестве заключения предлагаем закрепить полученную информацию на нескольких примерах задач, в которых нужно найти силу тока.

1 задача: Рассчитать I в цепи из двух резисторов при последовательном соединении и при параллельном соединении. R резисторов 1 и 2 Ома, источник питания на 12 Вольт.

Из условия ясно, что нужно привести два варианта ответа для каждого из вариантов соединений. Тогда чтобы найти ток при последовательном соединении, сначала складывают сопротивления схемы, чтобы получить общее.

R1+R2=1+2=3 Ома

Тогда рассчитать силу тока можно по закону Ома:

I=U/R=12/3=4 Ампера

При параллельном соединении двух элементов Rобщее можно рассчитать так:

Rобщ=(R1*R2)/(R1+R2)=1*2/3=2/3=0,67

Тогда дальнейшие вычисления можно проводить так:

I=12*0,67=18А

2 задача: рассчитать ток при смешанном соединении элементов. На выходе источника питания 24В, а резисторы на: R1=1 Ом, R2=3 Ома, R3=3 Ома.

В первую очередь нужно найти R общее параллельно соединенных R2 и R3, по той же формуле, что мы использовали выше.

Rприв=(R2*R3)/(R2+R3)=(3*3)|(3+3)=9/6=3/2=1,5 Ома

Теперь схема примет вид:

Далее находим ток по тому же закону Ома:

I=U/(R1+Rприв)=24/(1+1,5)=24/2,5=9,6 Ампер

Теперь вы знаете, как найти силу тока, зная мощность, сопротивление и напряжение. Надеемся, предоставленные формулы и примеры расчетов помогли вам усвоить материал!

Наверняка вы не знаете:

Источник: https://samelectrik.ru/kak-najti-silu-toka.html

Последовательное соединение резисторов. Схема соединения и примеры расчета

Во многих электрических схемах мы можем обнаружить последовательное и параллельное соединение резисторов. Разработчик схем может, например, объединить несколько резисторов со стандартными значениями (E-серии), чтобы получить необходимое сопротивление.

Последовательное соединении резисторов — это такое соединение, при котором ток, протекающий через каждый резистор одинаков, поскольку имеется только одно направление для протекания тока. В тоже время падение напряжения будет пропорционально сопротивлению каждого резистора в последовательной цепи.

Последовательное соединение резисторов

На рисунке ниже, резисторы R1, R2 и R3 связаны друг с другом последовательно между точками А и В с общим током I, который протекает через них.

Эквивалентное сопротивление нескольких последовательно соединенных резисторов можно определить по следующей формуле:

R = R1 + R2 + R3

То есть, в нашем случае общее сопротивление цепи будет равно:

R = R1 + R2 + R3 = 1 кОм + 2 кОм + 6 кОм = 9 кОм

Таким образом, мы можем заменить эти три резистора всего лишь одним «эквивалентным» резистором, который будет иметь значение 9 кОм.

Там, где четыре, пять или более резисторов связаны вместе в последовательную цепь, общее или эквивалентное сопротивление всей цепи так же будет равно сумме сопротивлений отдельных резисторов.

Следует отметить, что общее сопротивление любых двух или более резисторов, соединенных последовательно всегда будет больше, чем самое большое сопротивление резистора входящего в эту цепь. В приведенном выше примере R = 9 кОм, тогда как наибольшее значение резистора только 6 кОм (R3).

Напряжение на каждом из резисторов, соединенных последовательно, подчинено другому правилу, нежели протекающий ток. Как известно, из приведенной выше схемы, что общее напряжение питания на резисторах равно сумме разности потенциала на каждом из них:

Используя закон Ома , напряжение на отдельных резисторов может быть вычислена следующим образом:

В итоге сумма разностей потенциалов на резисторах равна общей разности потенциалов всей цепи, нашем примере это 9В.

В частности, ряд резисторов, соединенных последовательно, можно рассматривать как делитель напряжения:

Пример № 1

Используя закон Ома, необходимо вычислить эквивалентное сопротивление серии последовательно соединенных резисторов (R1. R2, R3), а так же падение напряжения и мощность для каждого резистора:

Все данные могут быть получены с помощью закона Ома и для лучшего понимания представлены в виде следующей таблицы:

Пример № 2

Необходимо рассчитать падение напряжения на выводах «А» и «В»:

а) без подключенного резистора R3

б) с подключенным резистором R3

Как вы можете видеть, выходное напряжение U без нагрузочного резистора R3, составляет 6 вольт, но то же выходное напряжение при подключении R3 становится всего лишь 4 В. Таким образом, нагрузка, подключенная к делителю напряжения, провоцирует дополнительное падение напряжение. Данный эффект снижения напряжения может быть компенсирован с помощью потенциометра установленного вместо постоянного резистора, с помощью которого можно скорректировать напряжение на нагрузке.

Онлайн калькулятор расчета сопротивления последовательно соединенных резисторов

Чтобы быстро вычислить общее сопротивление двух и более резисторов, соединенных последовательно, вы можете воспользоваться следующим онлайн калькулятором:

Подведем итог

Когда два или несколько резисторов соединены вместе (вывод одного соединяется с выводом другого резистора) — то это последовательное соединение резисторов. Ток, протекающий через резисторы имеет одно и тоже значение, но падение напряжения на них не одно и то же. Оно определяется сопротивлением каждого резистора, которое рассчитывается по закону Ома (U = I * R).

Источник: http://www.joyta.ru/7377-posledovatelnoe-soedinenie-rezistorov/

Понравилась статья? Поделиться с друзьями:
220 вольт
Сломался электросчетчик что делать

Закрыть