Что такое резистор и зачем он нужен
Приветствую, друзья!
Сегодня мы познакомимся ещё с одним «кирпичиком» электроники — резистором.
Мы не будем рассматривать все многообразие современных резисторов, но ознакомимся с принципом их действия.
И дадим кое-какие практические рекомендации применительно к компьютерам и периферийным устройствам.
Но сначала немного теории «на пальцах».
Проводники, полупроводники и диэлектрики
С точки зрения прохождения электрического тока (движения заряженных частиц) все вещества можно условно разделить на три большие группы — проводники, полупроводники и диэлектрики.
Проводники — это вещества, которые, в первом приближении, хорошо проводят ток, полупроводники — это вещества, которые плохо проводят ток, диэлектрики — не проводят ток вообще. Класс вещества определяется степенью сопротивление электрическому току.
Степень сопротивления вещества определяется строением его молекул и наличием различного количества свободных заряженных частиц.
Меньше всего сопротивляются прохождению электрического тока проводники, больше всего — диэлектрики.
Большинство металлов и их сплавов являются проводниками.
Проводники используются для доставки электрической энергию от генератора к потребителю.
Чтобы энергия доходила без больших потерь, необходимо, чтобы проводники (провода и кабели) обладали низким сопротивлением. Лучшими проводниками являются серебро, медь и алюминий.
Полупроводники в чистом виде плохо проводят электрический ток.
Но при добавлении определенных веществ в них появляется избыток заряженных частиц того или иного знака (p – положительно заряженных частиц и n – отрицательно заряженных).
При соединении двух полупроводников различного знака получается такая фундаментальная вещь как p-n переход.
P-n переход является основой большинства полупроводниковых приборов (диодов, транзисторов и т.п.)
В компьютере присутствуют и проводники, и полупроводники, и диэлектрики.
Так, например, материнская плата вашего компьютера сделана из диэлектрического материала (стеклотекстолита), на поверхности которого расположены медные проводники, к которым припаяны различные детали.
Процессор вашего компьютера содержит в себе несколько миллионов полупроводниковых транзисторов.
Кроме того, на плате полно отдельных (дискретных) диодов, транзисторов, конденсаторов и резисторов.
Что такое резистор
Резистор — это электронная деталь (условно относящаяся к классу проводников), обладающая сопротивление электрическому току.
В электронной технике очень часто надо внести в электрическую цепь не просто сопротивление, но сопротивление определенной величины.
Чем больше сопротивление электрической цепи, тем меньше соответствии с законом Ома ток в ней при том же напряжении:
I = U/R, где I – электрический ток, U – напряжение, R – сопротивление
Если ток представить в виде движения стада животных, то пастух будет представлять собой напряжение. Сопротивлением в этом случае будет выступать нрав животных. Стадо можно заставить двигаться быстрее (увеличить силу тока), если пастух начнет щелкать бичом (поднимется напряжение).
Ток (сила тока) измеряется в амперах, напряжение — в вольтах, сопротивление – в омах.
Все эти единицы названы в честь физиков Анри-Мари Ампера, Алессандро Вольты и Георга Ома.
Резисторы могут иметь сопротивление от долей Ома до десятков и сотен Мегом (миллионов Ом). Электрическая лампочка накаливания – это, по существу, также резистор, обладающий сопротивлением в несколько десятков или сотен Ом (в зависимости от мощности лампы).
Постоянные, переменные и подстрочные резисторы
Постоянный резистор — это деталь с двумя выводами, которая вносит в электрическую цепь постоянное сопротивление.
Постоянный резистор представляет собой стержень из диэлектрического материала (чаще всего из керамики) на поверхности которой нанесена токопроводящая пленка из углерода или металлического сплава.
На торцы стержня плотно насажены «чашечки», переходящие в проволочные выводы. Чем тоньше плёнка, тем больше сопротивление.
На поверхность стержня могут наноситься канавки, увеличивающие сопротивление. Резистор с небольшим значением сопротивления может представлять собой керамическое основание с намотанным на него тонким проводом.
Для защиты резистивного слоя сверху наносится слой компаунда или лака, поверх которого наносится буквенно-цифровая маркировка или маркировка в виде нескольких цветных колец.
Раньше выводы резисторов в большинстве случаев были медными. Теперь же часто основу этих выводов составляет железо (которое дешевле меди).
Очень часто возникает задача изменить вносимое в электрическую цепь сопротивление. Это задачу выполняют переменные или подстроечные резисторы, у которых три (или более) вывода.
Переменные резисторы отличаются тем, что токопроводящий слой на них нанесен виде подковы, к концам которой подключены два неподвижных вывода.
Третий вывод – подвижный — скользит по подкове, поэтому при перемещении его сопротивление между ним и крайними выводами меняется.
Положение подвижного вывода можно менять посредством соединенной с ним вращающейся рукоятки.
Подстроечный резистор отличается от переменного тем, что в нем труднее повернуть рукоятку.
Часто в рукоятке подстроечного резистора делают прорези под шлиц отвертки.
Иногда после регулировки электрической схемы рукоятку заливают компаундом или полиэтиленом — чтобы невозможно было ее повернуть и сбить настройку.
Кстати, регулятор громкости в ваших настольных акустических системах – это переменный резистор.
SMD резисторы
Если посмотреть на материнскую плату компьютера, можно увидеть другое конструктивное исполнение резисторов (и других деталей тоже). Это SMD (Surface Mounted Device) исполнение, предназначенное для монтажа на поверхность платы.
Традиционный резистор с проволочными выводами монтируется «через отверстие» (through hole).
При этом SMD резисторы выглядят в виде «кирпичиков» различного размера без проволочных выводов. Выводами в этом случае является торцы кирпичика, покрытые припоем.
При использовании SMD компонентов увеличивается плотность монтажа, уменьшаются размеры изделий, и в плате не нужно сверлить сотни отверстий.
Кроме того, из-за отсутствия длинных проволочных выводов уменьшается паразитная емкость и индуктивность резистора, что улучшает характеристики устройства в целом.
Выбор необходимого типоразмера SMD осуществляется исходя из необходимой рассеиваемой мощности. Здесь действует та же физика: чем больше размер, тем большую мощность может рассеивать резистор. Типоразмеры SMD резисторов и рассеиваемая мощность приведены в таблице.
Конструктивно SMD резистор представляет собой кусочек из той же керамики в виде параллелепипеда с нанесенной на его поверхность резистивной пленкой. Толщина и состав резистивных пленок могут быть различными.
Условно SMD резисторы разделяют на толстопленочные (10-70 микрометров) и тонкопленочные (единицы микрометров и менее), которые различаются технологией производства. Резистивные пленки могут быть из нихрома, нитрида тантала, оксида свинца и других материалов. Точная подстройка номинала резистора осуществляется с помощью луча лазера.
Сверху резистивный слой защищен защитным слоем с нанесенной на нем маркировкой.
Существует SMD резисторы с нулевым сопротивлением, которые используется в качестве перемычек.
Тепловое действие электрического тока
При прохождении через проводник электрический ток оказывает тепловое действие — проводник нагревается. Степень нагрева определяется величиной тока и сопротивлением в соответствии с законом Джоуля-Ленца.
Q = I²*R*t, где Q – количество теплоты, I – сила тока, R – сопротивление, t — время
На этом принципе работают паяльники и всякого рода нагреватели.
Заканчивая первую часть статьи, отметим, что и «обычный» резистор в электронной схеме тоже в той или иной мере нагревается.
Через резисторы могут проходить различные токи, поэтому на них может рассеиваться различная мощность.
Тепловая мощность рассеивается в виде излучения. Интенсивность излучения определяется в том числе и площадью поверхности излучения.
Поэтому, чтобы рассеять бОльшую мощность, требуется бОльшая поверхность излучения, и, соответственно, бОльшие габариты резистора.
Источник: https://vsbot.ru/lektronika/chto-takoe-resistor-i-zachem-on-nuzhen.html
III. Основы электродинамики
Как известно, химически чистая (дистиллированная) вода является плохим проводником. Однако при растворении в воде различных веществ (кислот, щелочей, солей и др.) раствор становится проводником, из-за распада молекул вещества на ионы. Это явление называется электролитической диссоциацией, а сам раствор электролитом, способным проводить ток.
В отличие от металлов и газов прохождение тока через электролит сопровождается химическими реакциями на электродах, что приводит к выделению на них химических элементов, входящих в состав электролита.
Первый закон Фарадея: масса вещества, выделяющегося на каком-либо из электродов, прямо пропорциональна заряду, прошедшему через электролит
Электрохимический эквивалент вещества — табличная величина.
Второй закон Фарадея:
Протекание тока в жидкостях сопровождается выделением теплоты. При этом выполняется закон Джоуля-Ленца.
Электрический ток в металлах
При прохождении тока металлы нагреваются. В результате чего ионы кристаллической решетки начинают колебаться с большей амплитудой вблизи положений равновесия. В результате этого поток электронов чаще соударяется с кристаллической решеткой, а следовательно возрастает сопротивление их движению. При увеличении температуры растет сопротивление проводника.
Каждое вещество характеризуется собственным температурным коэффициентом сопротивления — табличная величина. Существуют специальные сплавы, сопротивление которых практически не изменяется при нагревании, например манганин и константан.
Явление сверхпроводимости. При температурах близких к абсолютному нулю (-2730C) удельное сопротивление проводника скачком падает до нуля. Сверхпроводимость — микроскопический квантовый эффект.
Применение электрического тока в металлах
Лампа накаливания производит свет за счет электрического тока, протекающего по нити накала. Материал нити накала имеет высокую температуру плавления (например, вольфрам), так как она разогревается до температуры 2500 – 3250К. Нить помещена в стеклянную колбу с инертным газом.
Электрический ток в газах
Газы в естественном состоянии не проводят электричества (являются диэлектриками), так как состоят из электрически нейтральных атомов и молекул. Проводником может стать ионизированный газ, содержащий электроны, положительные и отрицательные ионы.
Ионизация может возникать под действием высоких температур, различных излучений (ультрафиолетового, рентгеновского, радиоактивного), космических лучей, столкновения частиц между собой.
Ионизированное состояние газа получило название плазмы. В масштабах Вселенной плазма — наиболее распространенное агрегатное состояние вещества. Из нее состоят Солнце, звезды, верхние слои атмосферы.
Прохождение электрического тока через газ называется газовым разрядом.
В «рекламной» неоновой трубке протекает тлеющий разряд. Светящийся газ представляет собой «живую плазму».
Между электродами сварочного аппарата возникает дуговой разряд.
Дуговой разряд горит в ртутных лампах — очень ярких источниках света.
Искровой разряд наблюдаем в молниях. Здесь напряженность электрического поля достигает пробивного значения. Сила тока около 10 МА!
Для коронного разряда характерно свечение газа, образуя «корону», окружающую электрод.
Коронный разряд — основной источник потерь энергии высоковольтных линий электропередачи.
Электрический ток в вакууме
А возможно ли распространение электрического тока в вакууме (от лат. vacuum — пустота)? Поскольку в вакууме нет свободных носителей зарядов, то он является идеальным диэлектриком. Появление ионов привело бы к исчезновению вакуума и получению ионизированного газа. Но вот появление свободных электронов обеспечит протекание тока через вакуум. Как получить в вакууме свободные электроны? С помощью явления термоэлектронной эмиссии — испускания веществом электронов при нагревании.
Вакуумный диод, триод, электронно-лучевая трубка (в старых телевизорах) — приборы, работа которых основана на явлении термоэлектронной эмиссии. Основной принцип действия: наличие тугоплавкого материала, через который протекает ток — катод, холодный электрод, собирающий термоэлектроны — анод.
Источник: http://fizmat.by/kursy/jelektricheskij_tok/sreda_toka
Почему нагревается проводник с током, и как правильно выбирать проводник?
Разбираем, почему и как нагревается проводник при прохождении через него электрического тока
Почему при прохождении электрического тока проводник нагревается? Ответ на этот вопрос крайне важен при выборе материалов и сечения проводников, а также в контексте борьбы с последствиями токов короткого замыкания.
Поэтому в нашей статье мы постараемся максимально подробно, но при этом на доступном языке, разобраться с причинами нагрева, его этапами и использовании этого свойства проводников на практике.
Причины нагрева проводников и их этапы
Так почему при прохождении тока проводник нагревается? Ответ на этот вопрос независимо друг от друга дали Джеймс Джоуль в 1841 году, и Эмиль Ленц в 1842 году. В связи с этим. открытый ими закон получил название Джоуля-Ленца.
Закон Джоуля-Ленца
Звучит этот закон, как: мощность тепла, выделяемого в единице объема проводника, равна произведению напряженности электрического тока к его плотности. Если из этого определения вам сразу все стало понятно, то наша статья не для вас. Мы поговорим с теми, кто, как и я, когда услышал первый раз это определение, удивленно хлопал глазами.
Поэтому мы будем по минимуму использовать формулы, а постараемся на пальцах объяснить, что значит этот закон:
Итак, у нас имеется проводник, по которому протекает электрический ток.
| |
Удельные сопротивления различных веществ | Начнем с объяснения сопротивления проводника. Любой материал обладает так называемой удельной проводимостью – это способность проводит электрический ток.У одних материалов этот показатель достаточно высокий и их называют проводниками. У других материалов эта способность очень низкая, и их называют диэлектриками. |
Зависимость сопротивления провода от удельного сопротивления материала | Чем выше способность материала проводить электрический ток, тем ниже его сопротивление. Но сопротивление проводника зависит еще от одного параметра – это его сечение.Ведь проводник — это как коридор для заряженных частиц, чем их больше, тем сложнее им пройти. Поэтому чем больше ток, тем большее сечение должно быть у проводника. |
Зависимость сопротивления кабеля от его сечения | Все современные провода и кабели имеют строго определённое сопротивление, которое напрямую зависит от их сечения. Обычно оно указано в паспорте продукта и регламентируется ГОСТами как на видео. |
Работа, выполненная электрическим током в проводнике, равна количеству выделенного тепла | Ток, преодолевая сопротивление проводника, выполняет работу. Результатом этой работы является выделение тепла. Чем большее количество этого тепла, тем быстрее нагревается проводник. |
Соответственно, чем большее количество времени протекает ток по проводнику, чем большее сопротивление проводника, чем больший ток протекает по проводнику, тем быстрее и больше он нагревается. Вот так характеризует нагревание проводников электрическим током закон Джоуля-Ленца.
Обратите внимание! Электрическая проводимость, а соответственно и сопротивление проводника, напрямую зависит от его температуры. Чем она выше, тем больше сопротивление проводника. Поэтому получается лавинообразный процесс. Проводник греется, его сопротивление растет, и он греется еще больше. В связи с этим, процессу отвода тепла от проводника следует уделять самое пристальное внимание.
Отвод тепла от проводника и этапы нагрева
В связи с приведенным выше свойством, с нагревом проводников нужно бороться. Достигается это за счет выбора оптимального сечения провода, а также материала. То есть, сечение провода должно соответствовать максимально допустимому току, который может протекать в нем, а также нормально выдерживать кратковременные перегрузки.
- Дабы все это правильно рассчитать, мы должны знать не только как закон Джоуля-Ленца нагревание проводников электрическим током рассчитывает, но и как посчитать отдачу тепла проводником. Ведь наш проводник находится не в вакууме, и отдает тепло окружающей среде.
- Сразу давайте определимся, какие параметры влияют на теплоотдачу проводника. Прежде всего, это сечение проводника, ведь вполне логично, что чем большая площадь проводника соприкасается с окружающим воздухом, тем быстрее он ее отдает.
Теплоотдача различных материалов
- Следующим важным критерием является так называемый коэффициент теплоотдачи материала, из которого выполнен проводник. Или как этот параметр еще называют — теплопроводность материала. Ведь ни для кого не секрет, что теплопроводность у материалов разная.
- Ну и последним параметром, является разность между температурой окружающей среды и материалом проводника. Ведь как говорит инструкция: чем больше этот перепад, тем быстрее материал отдает тепло.
Температура установившегося режима
- Исходя из этих всех параметров, влияющих на теплоотдачу, можно предположить, что для любого проводника и любого тока имеется, так называемая, установившаяся температура. То есть, температура, при которой существует равенство получаемой энергии от протекания тока и отводимого тепла.
Рабочая температура проводника с ПВХ изоляцией
- Такую температуру называют установившимся режимом. И она должна быть в пределах рабочей температуры провода. Рабочая температура провода обычно ограничена типом используемой изоляции.
Например, для ПВХ-изоляции она не должна превышать 70⁰С, а разнообразные материалы с пропиткой лаком способны выдерживать температуры до 120⁰С и выше.
Выбор проводников
Как вы можете понять из всего выше написанного, проводники следует выбирать из условий нагрева. Дабы при определённом токе их температура не превышала максимально допустимую. Сделать это можно своими руками, благодаря таблицам в ПУЭ. Но и в этом вопросе сначала необходимо разобраться.
- В ПУЭ приведены таблицы, по которым можно осуществить выбор проводников по нагреву, экономической плотности тока, способу прокладки и другим параметрам. Но для начала мы точно должны знать условия монтажа и работы провода. Давайте разберем, зачем это нужно.
Допустимые перегрузки для кабелей в бумажной изоляции
- Но прежде разберемся с током. Ни для кого не секрет, что в течение времени ток в проводнике будет меняться. И какой из них следует рассматривать в качестве результирующего для выбора сечения проводника, непонятно. На этот вопрос нам отвечает п. 1.3.2 ПУЭ, который гласит, что для выбора следует применять средний ток в течении получаса, наиболее нагруженного в течении суток.
На фото поправочные температурные коэффициенты
- Теперь давайте определимся с температурой. В разных местах монтажа она может достаточно сильно отличаться от рабочей температуры. Это следует учитывать. Поэтому в табл. 1.3.3 ПУЭ приведены поправочные коэффициенты для различной кабельно-проводниковой продукции, если температуры в которых будет работать кабель, отличается от рабочей.
- Выбор проводников по нагреву, плотности тока, обязательно учитывает способ прокладки проводника. Это может быть одиночная прокладка по воздуху, а может быть монтаж в земле или в трубах. Согласитесь, теплоотведение у таких проводников будет существенно отличаться. И это обязательно стоит учитывать.
- Так же следует учитывать количество жил проводника. То ли у нас охлаждается одна жила, то ли три, которые соприкасаются.
Обратите внимание! В табл. 1.3.12 ПУЭ имеется отдельный поправочный коэффициент при монтаже проводников пучками. Ведь если у нас рядом проложено сразу несколько проводников, то они вполне могут нагревать друг друга и заметно хуже остывать. И это так же должно учитываться.
Источник: https://elektrik-a.su/kabeli-i-provoda/silovye/pochemu-nagrevaetsya-provodnik-s-tokom-215
Электрический ток
Электрический ток — направленное (упорядоченное) движение заряженных частиц.
Такими частицами могут являться: в металлах — электроны, в электролитах — ионы (катионы и анионы), в газах — ионы и электроны, в вакууме при определенных условиях — электроны, в полупроводниках — электроны и дырки (электронно-дырочная проводимость).
Иногда электрическим током называют также ток смещения, возникающий в результате изменения во времени электрического поля.
Электрический ток имеет следующие проявления:
- нагревание проводников (в сверхпроводниках не происходит выделения теплоты);
- изменение химического состава проводников (наблюдается преимущественно в электролитах);
- создание магнитного поля (проявляется у всех без исключения проводников).
Классификация:
Если заряженные частицы движутся внутри макроскопических тел относительно той или иной среды, то такой ток называют электрический ток проводимости. Если движутся макроскопические заряженные тела (например, заряженные капли дождя), то этот ток называют конвекционный ток.
Различают переменный (англ. alternating current, AC), постоянный (англ. direct current, DC) и пульсирующий электрические токи, а также их всевозможные комбинации. В таких понятиях часто слово «электрический» опускают.
Постоянный ток — ток, направление и величина которого слабо меняются во времени.
Переменный ток — ток, величина и направление которого меняются во времени. В широком смысле под переменным током понимают любой ток, не являющийся постоянным. Среди переменных токов основным является ток, величина которого изменяется по синусоидальному закону.
В этом случае потенциал каждого конца проводника изменяется по отношению к потенциалу другого конца проводника попеременно с положительного на отрицательный и наоборот, проходя при этом через все промежуточные потенциалы (включая и нулевой потенциал).
В результате возникает ток, непрерывно изменяющий направление: при движении в одном направлении он возрастает, достигая максимума, именуемого амплитудным значением, затем спадает, на какой-то момент становится равным нулю, потом вновь возрастает, но уже в другом направлении и также достигает максимального значения, спадает, чтобы затем вновь пройти через ноль, после чего цикл всех изменений возобновляется.
Квазистационарный ток — «относительно медленно изменяющийся переменный ток, для мгновенных значений которого с достаточной точностью выполняются законы постоянных токов» (БСЭ). Этими законами являются закон Ома, правила Кирхгофа и другие.
Квазистационарный ток, так же как и постоянный ток, имеет одинаковую силу тока во всех сечениях неразветвлённой цепи. При расчёте цепей квазистационарного тока из-за возникающей э. д. с. индукции ёмкости и индуктивности учитываются как сосредоточенные параметры.
Квазистационарными являются обычные промышленные токи, кроме токов в линиях дальних передач, в которых условие квазистационарности вдоль линии не выполняется.
Переменный ток высокой частоты — ток, в котором условие квазистационарности уже не выполняется, ток проходит по поверхности проводника, обтекая его со всех сторон. Этот эффект называется скин-эффектом.
Пульсирующий ток — ток, у которого изменяется только величина, а направление остаётся постоянным.
Вихревые токи (токи Фуко) — «замкнутые электрические токи в массивном проводнике, которые возникают при изменении пронизывающего его магнитного потока», поэтому вихревые токи являются индукционными токами. Чем быстрее изменяется магнитный поток, тем сильнее вихревые токи. Вихревые токи не текут по определённым путям в проводах, а замыкаясь в проводнике образуют вихреобразные контуры.
Существование вихревых токов приводит к скин-эффекту, то есть к тому, что переменный электрический ток и магнитный поток распространяются в основном в поверхностном слое проводника. Нагрев вихревыми токами проводников приводит к потерям энергии, особенно в сердечниках катушек переменного тока.
Для уменьшения потерь энергии на вихревые токи применяют деление магнитопроводов переменного тока на отдельные пластины, изолированные друг от друга и расположенные перпендикулярно направлению вихревых токов, что ограничивает возможные контуры их путей и сильно уменьшает величину этих токов.
При очень высоких частотах вместо ферромагнетиков для магнитопроводов применяют магнитодиэлектрики, в которых из-за очень большого сопротивления вихревые токи практически не возникают.
Характеристики:
Исторически принято, что направление тока совпадает с направлением движения положительных зарядов в проводнике. При этом, если единственными носителями тока являются отрицательно заряженные частицы (например, электроны в металле), то направление тока противоположно направлению движения заряженных частиц.
Скорость направленного движения частиц в проводниках зависит от материала проводника, массы и заряда частиц, окружающей температуры, приложенной разности потенциалов и составляет величину, намного меньшую скорости света.
За 1 секунду электроны в проводнике перемещаются за счет упорядоченного движения меньше чем на 0,1 мм. Несмотря на это, скорость распространения собственно электрического тока равна скорости света (скорости распространения фронта электромагнитной волны).
То есть то место, где электроны изменяют скорость своего движения после изменения напряжения, перемещается со скоростью распространения электромагнитных колебаний.
Основные типы проводников:
В отличие от диэлектриков в проводниках имеются свободные носители нескомпенсированных зарядов, которые под действием силы, как правило разности электрических потенциалов, приходят в движение и создают электрический ток. Вольтамперная характеристика (зависимость силы тока от напряжения) является важнейшей характеристикой проводника. Для металлических проводников и электролитов она имеет простейший вид: сила тока прямо пропорциональна напряжению (закон Ома).
Металлы — здесь носителями тока являются электроны проводимости, которые принято рассматривать как электронный газ, отчётливо проявляющий квантовые свойства вырожденного газа.
Плазма — ионизированный газ. Электрический заряд переносится ионами (положительными и отрицательными) и свободными электронами, которые образуются под действием излучения (ультрафиолетового, рентгеновского и других) и (или) нагревания.
Электролиты — «жидкие или твёрдые вещества и системы, в которых присутствуют в сколько-нибудь заметной концентрации ионы, обусловливающие прохождение электрического тока». Ионы образуются в процессе электролитической диссоциации.
При нагревании сопротивление электролитов падает из-за увеличения числа молекул, разложившихся на ионы. В результате прохождения тока через электролит ионы подходят к электродам и нейтрализуются, оседая на них.
Законы электролиза Фарадея определяют массу вещества, выделившегося на электродах.
Существует также электрический ток электронов в вакууме, который используется в электронно-лучевых приборах.
Источник: http://www.elektal.com.ua/spravochnik/articles/elektricheskiy_tok.html
Работа и мощность электрического тока. Закон Джоуля-Ленца – FIZI4KA
ОГЭ 2018 по физике ›
1. Электрический ток, проходя по цепи, производит разные действия: тепловое, механическое, химическое, магнитное. При этом электрическое поле совершает работу, и электрическая энергия превращается в другие виды энергии: во внутреннюю, механическую, энергию магнитного поля и пр.
Как было показано, напряжение \( (U) \) на участке цепи равно отношению работы \( (F) \), совершаемой при перемещении электрического заряда \( (q) \) на этом участке, к заряду: \( U=A/q \). Отсюда \( A=qU \).
Поскольку заряд равен произведению силы тока \( (I) \) и времени \( (t) \) \( q=It \), то \( A=IUt \), т.е.
работа электрического тока на участке цепи равна произведению напряжения на этом участке, силы тока и времени, в течение которого совершается работа.
Единицей работы является джоуль (1 Дж). Эту единицу можно выразить через электрические единицы:
\( [A] \)= 1 Дж = 1 В · 1 А · 1 с
Для измерения работы используют три измерительных прибора: амперметр, вольтметр и часы, однако, в реальной жизни для измерения работы электрического тока используют счётчики электрической энергии.
Если нужно найти работу тока, но при этом сила тока или напряжение неизвестны, то можно воспользоваться законом Ома, выразить неизвестные величины и рассчитать работу по формулам: \( A=\frac{U2}{R}t \) или \( A=I2Rt \).
2. Мощность электрического тока равна отношению работы ко времени, за которое она совершена: \( P=A/t \) или \( P=IUt/t \); \( P=IU \), т.е. мощность электрического тока равна произведению напряжения и силы тока в цепи.
Единицей мощности является ватт (1 Вт): \( [P]=[I]\cdot[U] \); \( [P] \) = 1 А · 1 В = 1 Вт.
Используя закон Ома, можно получить другие формулы для расчета мощности тока: \( P=\frac{U2}{R};P=I2R \).
Значение мощности электрического тока в проводнике можно определить с помощью амперметра и вольтметра, измерив соответственно силу тока и напряжение. Можно для измерения мощности использовать специальный прибор, называемый ваттметром, в котором объединены амперметр и вольтметр.
3. При прохождении электрического тока по проводнику он нагревается.
Это происходит потому, что перемещающиеся под действием электрического поля свободные электроны в металлах и ионы в растворах электролитов сталкиваются с молекулами или атомами проводников и передают им свою энергию.
Таким образом, при совершении током работы увеличивается внутренняя энергия проводника, в нём выделяется некоторое количество теплоты, равное работе тока, и проводник нагревается: \( Q=A \) или \( Q=IUt \). Учитывая, что \( U=IR \), \( Q=I2Rt \).
Количество теплоты, выделяющееся при прохождении тока но проводнику, равно произведению квадрата силы тока, сопротивления проводника и времени.
Этот закон называют законом Джоуля-Ленца.
- Примеры заданий
- Ответы
Часть 1
1. Силу тока в проводнике увеличили в 2 раза. Как изменится количество теплоты, выделяющееся в нём за единицу времени, при неизменном сопротивлении проводника?
1) увеличится в 4 раза 2) уменьшится в 2 раза 3) увеличится в 2 раза
4) уменьшится в 4 раза
2. Длину спирали электроплитки уменьшили в 2 раза. Как изменится количество теплоты, выделяющееся в спирали за единицу времени, при неизменном напряжении сети?
1) увеличится в 4 раза 2) уменьшится в 2 раза 3) увеличится в 2 раза
4) уменьшится в 4 раза
3. Сопротивления резистор \( R_1 \) в четыре раза меньше сопротивления резистора \( R_2 \). Работа тока в резисторе 2
1) в 4 раза больше, чем в резисторе 1 2) в 16 раз больше, чем в резисторе 1 3) в 4 раза меньше, чем в резисторе 1
4) в 16 раз меньше, чем в резисторе 1
4. Сопротивление резистора \( R_1 \) в 3 раза больше сопротивления резистора \( R_2 \). Количество теплоты, которое выделится в резисторе 1
1) в 3 раза больше, чем в резисторе 2 2) в 9 раз больше, чем в резисторе 2 3) в 3 раза меньше, чем в резисторе 2
4) в 9 раз меньше, чем в резисторе 2
5. Цепь собрана из источника тока, лампочки и тонкой железной проволоки, соединенных последовательно. Лампочка станет гореть ярче, если
1) проволоку заменить на более тонкую железную 2) уменьшить длину проволоки 3) поменять местами проволоку и лампочку
4) железную проволоку заменить на нихромовую
6. На рисунке приведена столбчатая диаграмма. На ней представлены значения напряжения на концах двух проводников (1) и (2) одинакового сопротивления. Сравните значения работы тока \( A_1 \) и \( A_2 \) в этих проводниках за одно и то же время.
1) \( A_1=A_2 \)
2) \( A_1=3A_2 \)
3) \( 9A_1=A_2 \)
4) \( 3A_1=A_2 \)
7. На рисунке приведена столбчатая диаграмма. На ней представлены значения силы тока в двух проводниках (1) и (2) одинакового сопротивления. Сравните значения работы тока \( A_1 \) и \( A_2 \) в этих проводниках за одно и то же время.
1) \( A_1=A_2 \)
2) \( A_1=3A_2 \)
3) \( 9A_1=A_2 \)
4) \( 3A_1=A_2 \)
8. Если в люстре для освещения помещения использовать лампы мощностью 60 и 100 Вт, то
А. Большая сила тока будет в лампе мощностью 100 Вт.
Б. Большее сопротивление имеет лампа мощностью 60 Вт.
Верным(-и) является(-ются) утверждение(-я)
1) только А 2) только Б 3) и А, и Б
4) ни А, ни Б
9. Электрическая плитка, подключённая к источнику постоянного тока, за 120 с потребляет 108 кДж энергии. Чему равна сила тока в спирали плитки, если её сопротивление 25 Ом?
1) 36 А 2) 6 А 3) 2,16 А
4) 1,5 А
10. Электрическая плитка при силе тока 5 А потребляет 1000 кДж энергии. Чему равно время прохождения тока по спирали плитки, если её сопротивление 20 Ом?
1) 10000 с 2) 2000 с 3) 10 с
4) 2 с
11. Никелиновую спираль электроплитки заменили на нихромовую такой же длины и площади поперечного сечения. Установите соответствие между физическими величинами и их возможными изменениями при включении плитки в электрическую сеть. Запишите в таблицу выбранные цифры под соответствующими буквами. Цифры в ответе могут повторяться.
ФИЗИЧЕСКАЯ ВЕЛИЧИНА A) электрическое сопротивление спирали Б) сила электрического тока в спирали
B) мощность электрического тока, потребляемая плиткой
ХАРАКТЕР ИЗМЕНЕНИЯ 1) увеличилась 2) уменьшилась
3) не изменилась
12. Установите соответствие между физическими величинами и формулами, по которым эти величины определяются. Запишите в таблицу выбранные цифры под соответствующими буквами.
ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ A) работа тока Б) сила тока
B) мощность тока
ФОРМУЛЫ
1) \( \frac{q}{t} \)
2) \( qU \)
3) \( \frac{RS}{L} \)
4) \( UI \)
5) \( \frac{U}{I} \)
Часть 2
13. Нагреватель включён последовательно с реостатом сопротивлением 7,5 Ом в сеть с напряжением 220 В. Каково сопротивление нагревателя, если мощность электрического тока в реостате составляет 480 Вт?
Ответы
Источник: https://fizi4ka.ru/ogje-2018-po-fizike/rabota-i-moshhnost-jelektricheskogo-toka-zakon-dzhoulja-lenca.html