Как изменить частоту тока

Зависимость тока и частоты: требования, формула, влияние

как изменить частоту тока

Частота электрического тока выступает одним из параметров качества электроэнергии и основной характеристикой режима энергосистемы. Количественно частота в энергосети равна количеству периодов в секунду. Изменение частоты в сети влияет на функционирование и, соответственно, производительность работы потребителей. Также свое влияние оказывает отклонение частоты на работу всей энергосистемы.

Нормируемые требования к показателям

В РФ требования к качеству работы энергосистемы стандартизированы.

В соответствии с ГОСТ 13109-97 частота в энергосистеме должна непрерывно поддерживаться на уровне f = 50 ± 0,2 Гц, при этом допускается кратковременное отклонение частоты до значения ∆f = 0,4 Гц.

Анализируя зависимость силы тока от частоты, можно сделать вывод, что если подключаемая нагрузка имеет чисто активный характер (к примеру, резистор), то в широком диапазоне сила тока от частоты иметь зависимость не будет. В случае достаточно высоких частот, когда индуктивность и ёмкость подключаемой нагрузки будут характеризоваться сопротивлением, сравнимым с активным, то сила тока будет иметь определенную зависимость от частоты.

Другими словами, при варьировании частоты тока происходит изменение ёмкостного сопротивления, изменение которого, в свою очередь, приводит к изменению тока, протекающего по цепи.

То есть при повышении частоты, снижается ёмкостное сопротивление, и повышается ток, протекающий по цепи.

Математическое выражение зависимости будет иметь следующий вид: I = UCω;

Зависимость при учете активного сопротивления будет определяться следующим выражением: I (ω) = UCω √(R2 • C2 • ω2 + 1).

Влияние частоты тока на электроприборы

Далее рассмотрим влияние частоты электрического тока. Увеличение частоты до сравнительно невысоких величин (1 — 10 тыс. Гц), обычно является следствием исключительно повышения номинальной мощности электроаппаратуры, поскольку таким образом возрастает проводимость газовых промежутков. Для измерения частоты в системе используют частотомеры.

Паровая турбина разрабатываются и создаются таким образом, чтобы при номинальной скорости вращения (частоте) обеспечивалась максимальная выходная мощность на валу. При этом уменьшение номинальной частоты является следствием возникновения потерь на удар пара о лопатки с единовременным повышением момента вращения, а повышение частоты — к снижению момента вращения.

Таким образом, наиболее экономичный режим работы достигается при оптимальной частоте.

Помимо этого, работа на пониженных частотах приводит к ускоренному износу рабочих лопаток и прочих частей и механизмов. Снижение частоты оказывает влияние на расход на собственные нужды станций.

Источник: https://pue8.ru/elektrotekhnik/901-zavisimost-toka-i-chastoty.html

частота, как регулировать частоту на бензиновом генераторе

как изменить частоту тока

25 Января 2013

Вопрос:
Как регулировать частоту на бензиновом генераторе?

Ответ:

В бензиновой электростанции и дизельной  электростанции  регулировка частоты вращения (об/мин) двигателя и частоты (Гц) переменного тока непосредственно связаны. Частота вращения бензиновых  двигателей электрогенераторов  для резервного электроснабжения в нормальном режиме составляет 3000 3500 об/мин, для  сохранения оптимальных установок частоты для ваших электроприборов.

 В идеале частота должна соответствовать 50 Гц. Электрогенератор не может обеспечить частоту, которая точно равна 50 Гц из за изменений частоты вращения двигателя. По причинам. Так например, забитый воздушный фильтр может повлиять на то, что двигатель не будет вращаться с частотой 3000 об/мин или же из-за ухудшения подачи топлива мощность двигателя будет снижаться. При подаче большой нагрузки кратковременно, обороты могут понижаться , что отразится и на частоте Гц.

 Одним из решений является установка Источника Бесперебойного Питания ON-LINE (двойного преобразования) ЧТО ЭТО? 

Если у вас есть подозрения в неточности выдаваемой частоты лучше обратиться в сервисный центр по обслуживанию электростанций вашей марки

 Если вы не имеете такой возможности или желания). То можете ознакомиться  с рекомендацией по самостоятельной регулировке.

 Вам потребуется тахометр, лучше всего использовать тахометр (предназначенный для небольших двигателей) и частотомер, входящий в состав мультиметров среднего и высокого класса.

Примечание: винт регулятора оборотов можно определить по желтой маркировке и пружине, охватывающей резьбу винта, в целях предотвращения изменения настройки.

  1. На карбюраторных бензиновых двигателях, есть регулировочный винт оборотов двигателя расположенный непосредственно на карбюраторе. винт регулятора оборотов можно определить по желтой маркировке и пружине, охватывающей резьбу винта, в целях предотвращения изменения настройки. Вращая его можно регулировать обороты работы мотора .  Для  точной настройки подсоедените тахометр и отрегулируйте обороты на 3000 об/мин.
  2. С помощью частотомера можно отрегулировать обороты, чтобы установить частоту в оптимальном диапазоне: 50 Гц. Вы можете подключить к генератору нагрузку, которую вы обычно используете, а затем выполнить регулировку винтом частоты в пределах 50 Гц. При повышенной частоте тока частота вращения двигателя повышается, что может вызвать повреждение деталей внутри двигателя. Двигатель имеет механический регулятор, который обеспечивает требуемую частоту вращения при стандартной установке частоты. Не пытайтесь выполнять регулировку винтом без надлежащих инструментов. Вам не удастся сделать это на слух!

Если ваша электростанция находится на гарантии, помните что ваши действия могут повлечь снятие оборудования с гарантии

Источник: https://www.liderteh.ru/chastye_voprosy/chastota

Как измерить частоту мультиметром

как изменить частоту тока

Все сложные манипуляции, касающиеся электричества и домашней проводки, многие оставляют для профессионалов. Иногда проверить силу сопротивления, постоянное или переменное напряжение, а также количество полных циклов изменения тока нужно, а вызывать электрика нет возможности. В таком случае на помощь придет полезное приспособление – мультиметр. Не смотря на то, что данная функция не является основной, многие интересуются тем, как измерить частоту мультиметром.

Зачастую мультиметр-частотомер необходим для измерений в отдельных приборах, таких как генератор импульсного блока питания. Измерение сетевого значения лишь подтвердит наличие показателя в 50 Гц.

Мультиметр, частота которого в большинстве моделей имеет диапазон до 30 Гц, применяется лишь в быту, для производственных целей используются более сложные приспособления, такие как высокочастотный искровой тестер.

Необходимо детально ознакомиться не только с конструкцией измерительного аппарат, но и с особенностями измеряемого прибора, для того чтобы понять, как измерить частоту тока мультиметром.

Конструкция мультиметра

Тестер со встроенным частотомером — отличное приспособление для измерений, но существует ряд альтернативных методов, изучить которые можно ознакомившись со строением прибора.

Основной состав данного аппарата включает в себя функции амперметра, омметра и вольтметра. Используют такое приспособление при замерах постоянного и переменного напряжения, а также сопротивления.

Наиболее распространенной моделью данного прибора является цифровая, поскольку она, в отличии от аналоговой, позволяет произвести более точные замеры. Классическая конструкция включает в себя:

  • Индикатор. Он расположен в верхней части аппарата и служит экраном, на котором отображаются данные проверки.
  • Переключатель. Позволяет выбирать пределы показателей и величины. Вокруг переключателя нанесена шкала, которая в большинстве современных аппаратов имеет пять диапазонов. Первое значение указывает на 200 Ом. Если установить переключатель на эту шкалу, то измерить сопротивление больше данного показателя не будет возможности. Также шкала включает в себя показатели переключения между постоянным и переменным током, и значок прозвонки.
  • Гнезда для щупов. Позволяют подключить к тестеру измеряемый прибор. В большинстве моделей в нижней части размещено три разъема.Для тех же, кто интересуется тем, как замерить частоту мультиметром, необходимо обратить внимание на модели со специальными функциями. Помимо данного показателя, померить тестером можно индуктивность, температуру, электрическую емкость. Наличие дополнительных функций существенно влияет на стоимость, потому не каждый может позволить себе приобрести для применения в быту такое приспособление. Отличным решением может стать приставка к мультиметру. Она позволяет при помощи аппарата со стандартным набором функций измерить нужный показатель.

Измерение частоты

Стоит напомнить, что интересуясь тем, как померить частоту мультиметром, предварительно важно ознакомиться с особенностями аппарата, который предстоит проверить. Только так можно достичь желаемого результата с максимально точными показателями.

Измерение частоты мультиметром со специальной функцией является наиболее удобным, поскольку в данном случае нет необходимости в использовании специальных приставок.

Происходят такие замеры в несколько этапов:

  • В первую очередь необходимо проверить измеритель на точность. Известно, что в сети частота имеет значение 50 Гц. Чтобы определить погрешность в работе тестера, необходимо подсоединить его к розетке. Показатель, отличающийся от 50 Гц, и будет погрешностью измерительного аппарата.
  • Далее, при помощи измерительных щупов необходимо подсоединить тестер к измеряемому прибору. Предварительно ознакомившись с инструкцией использования тестера, можно узнать необходимое для точности проверки напряжение. Установив показатель напряжения на нужное значение, можно приступать непосредственно к определению полных циклов изменения тока.
  • После этого измерение частоты тестером будет зависеть только от того, как изменяется период переменного тока.

Многих также интересует, как проверить частоту мультиметром при помощи специальных приставок. Частотомер — приставка к мультиметру является отличной альтернативой дорогим измерителям с множеством функций.

Многие тестеры с функцией определения циклов изменения тока имеют низкую чувствительность, потому дают неточные показатели. Приставка является дополняющим средством к измерителю. Она позволяет преобразовать полученные данные в напряжение.

Чтобы измерение частоты тока мультиметром имело минимальную погрешность, необходимо правильно подсоединить частотомер. Переключатель рода работ в измерительном приборе необходимо настроить так, чтобы переключатель указывал на постоянное напряжение. В таком случае нет необходимости перестраивать приставку при подключении к аппарату с входным сопротивлением, превышающим 1 мОм.

Измерение частоты тестером может давать разные результаты, зависящие в первую очередь от точности работы аппарата.

Потому при выборе способа проверки необходимо решить, насколько серьезно влияет на показатели погрешность прибора и/или приставки.

Предыдущая новость Следующая новость

Источник: https://evosnab.ru/instrument/avo/izmerenie-chastoty-multimetrom

Е.Г.Воропаев Электротехника

Два неподвижных полюса N и S создают магнитный поток. В пространстве между полюсами помещается стальной сердечник в виде цилиндра (рис. 7.1.1).

На наружной поверхности цилиндра помещен виток медной проволоки abcd, изолированный от сердечника. Концы его присоединены к двум кольцам, на которые наложены щетки 1 и 2. К щеткам подключена нагрузка zн.

Если вращать сердечник с частотой n в указанном на рисунке направлении, то виток abcd, вращаясь, будет пересекать магнитные силовые линии, на концах его будет наводиться ЭДС. И если к витку подключена нагрузка zн, то потечет и ток. Направление тока определится правилом «правой руки».

Из рисунка видно, что направление тока будет от точек b к а и от d к с. Соответственно во внешней цепи ток течет от щетки 1 к щетке 2. Щетку 1, от которой отводится ток во внешнюю цепь, обозначим (+), а щетку 2, через которую ток возвращается в машину обозначим (-).

При повороте витка на 180° проводники аb и cd меняются местами, изменяется знак потенциала на щетках 1 и 2 и изменится на обратное направление ток во внешней цепи. Таким образом, во внешней цепи течет переменный синусоидальный ток (рис. 7.1.2).

Чтобы выпрямить переменный ток, необходимо в машине применить коллектор (рис. 7.1.3).

В простейшем случае это два полукольца и к ним припаиваются концы витков abcd. Полукольца изолирования друг от друга и от вала. При вращении в витке abcd в нем попрежнему возникает переменная ЭДС, но под каждой щеткой будет ЭДС только одного знака: верхняя щетка будет иметь всегда (+), а нижняя — всегда (-).
Кривая тока во внешней цепи будет иметь другую форму (рис. 7.1.4).

Из графика видно, что нижняя полуволна заменена верхней. Если применить не один виток, а два и присоединить их концы к коллекторным пластинам, которых теперь 4, то кривая выпрямленного тока будет иной.
При наличии нескольких витков кривая выпрямленного напряжения будет более сглаженной (рис. 7.1.5).

Машина постоянного тока конструктивно состоит из неподвижной части — статора и вращающейся — ротора. Статор имеет станину, на внутренней поверхности которой крепятся магнитные полюсы с обмотками (рис. 7.1.6).

Ротор машины чаще называется якорем. Он состоит из вала, цилиндрического сердечника, обмотки и коллектора (рис. 7.1.7).

Магнитные полюсы и сердечник якоря набираются из отдельных листов электротехнической стали. Листы покрываются изолированной бумагой или лаком для уменьшения потерь на гистерезис и вихревые токи. Коллектор набирают из медных пластин, имеющих сложную форму (рис. 7.1.8). Пластины друг от друга изолированы специальной теплостойкой прокладкой. Такая же изоляция имеется между коллектором и валом двигателя. Набор коллекторных пластин образует, цилиндр-коллектор.

К внешней поверхности коллектора прилегают токосъемные щетки, которые выполнены из спрессованного медного и угольного порошка.
Щетка помещается в металлическую обойму и прижимается к коллектору пружинами (рис. 7.1.9).

7.2. СПОСОБЫ ВОЗБУЖДЕНИЯ МАШИН ПОСТОЯННОГО ТОКА

Возбуждение — это понятие, связанное с созданием основного магнитного поля машины. В машинах с электромагнитным возбуждением основное поле создается обмотками возбуждения. Имеются конструкции, в которых возбуждение создается постоянными магнитами, размещенными на статоре.
Различают четыре схемы включения статорных обмоток: с независимым, параллельным, последовательным и смешанным возбуждением (рис. 7.2.1).

Изображения под пунктами б, в, г на рис. 7.2.1, называются схемами с самовозбуждением. Процесс самовозбуждения происходит за счет остаточной намагниченности полюсов и станины. При вращении якоря в этом, небольшом по величине, магнитном поле (ФОСТ = 0,02 0,03 ФО) индуцируется ЭДС — ЕОСТ.

Поскольку обмотка возбуждения подключена через щетки к якорю, то в ней будет протекать ток. Этот ток усилит магнитное поде полюсов и приведет к увеличению ЭДС якоря. Большая ЭДС вновь увеличит ток возбуждения и произойдет нарастание магнитного потока до полного намагничивания машины.

7.3. ОБМОТКИ ЯКОРЯ МАШИНЫ ПОСТОЯННОГО ТОКА

Для работы машины постоянного тока необходимо наличие двух обмоток; обмотки возбуждения и обмотки якоря. Первая, как известно, служит для создания в машине основного магнитного потока, а во второй происходит преобразование энергии. Обмотка якоря является замкнутой системой проводников, уложенных в пазах.

Элементом якорной обмотки является секция, которая может быть одно — или много витковой. Секция состоит из активных сторон и лобовых частей. При вращении якоря, в каждой из активных сторон индуцируется ЭДС, величина которой равна:

т.е. она зависит от магнитной индукции полюсов ВСР, длины проводника L и скорости его движения V. В реальной машине, будь она генератором или двигателем, в наведении ЭДС участвуют все проводники обмотки якоря.
Величина суммарной ЭДС:

где n — скорость вращения якоря (ротора), об/мин; Ф — магнитный поток полюсов;

Се — постоянный коэффициент, зависящий от количества витков в секции.

ЭТО ИНТЕРЕСНО:  Как рассчитать световой поток

Обмотка якоря может быть петлевой и волновой. Петлевая обмотка, если ее изобразить в развернутом виде, имеет следующий вид (рис. 7.3.1):

Расстояние между активными сторонами одной секции называется первым шагом обмотки — y1. Расстояние между началом второй секции и концом первой называется вторым шагом обмотки — у2. Расстояние между, началами секций, следующих друг за другом, называется результирующим шагом — у.

Шаги обмотки определяются числом пазов.
Расстояние между коллекторными пластинами, куда припаиваются начало и конец, принадлежащие одной секции, называется шагом по коллектору — ук. В петлевой обмотке ук= 1. Шаг ук определяется числом коллекторных пластин.

Развернутая волновая обмотка имеет вид: (рис. 7.3.2).

Форма волновой обмотки отлична от петлевой и, следовательно, будет иное соединение секций. Однако шаги волновой обмотки имеют общее с петлевой определение.

Шаг по коллектору здесь значительно больше единицы (ук >> 1).

7.4. ЭДС И ЭЛЕКТРОМАГНИТНЫЙ МОМЕНТ ГЕНЕРАТОРА
ПОСТОЯННОГО ТОКА

Как уже отмечалось, ЭДС, наведенная в обмотке вращающегося якоря генератора, пропорциональна магнитному потоку полюсов и частоте его вращения:

Магнитный поток в генераторе, как известно, создается током возбуждения Iв.
Если вращать якорь c постоянной частотой n и непрерывно измерять выходную ЭДС Е, то можно построить график Е = f (Iв) (рис. 7.4.1).

Эта зависимость называется характеристикой холостого хода. Она строится для режима, когда генератор не имеет внешней нагрузки, т.е. работает вхолостую.
Если подключить к генератору нагрузку, то напряжение на его зажимах будет меньше E на величину падения напряжения в цепи якоря:

Здесь: U — напряжение на зажимах; Е — ЭДС в режиме х.х.;

IЯ — ток якоря;

RЯ — сопротивление в цепи якоря. Падение напряжения в цепи якоря обычно не превышает 2-8 % ЭДС генератора. Уменьшение напряжения на выходе генератора связано с размагничиванием машины магнитным полем якоря, а также падением напряжения в его обмотках.

В каждой машине постоянного тока имеет место взаимодействие между током якоря IЯ и магнитным потоком Ф. В результате на каждый проводник обмотки якоря действует электромагнитная сила:

где В — магнитная индукция,
IЯ — ток в обмотке якоря, L — длина якоря. Направление действия этой силы определяется правилом левой руки.

Подставим сюда среднее значение магнитной индукции ВСР и величину тока в каждом проводнике обмотки якоря I = IЯ / 2 а.

Получим

Электромагнитный момент, действующий на якорь машины, при числе проводников обмотки N:

где — величина, постоянная для данной машины; d — диаметр якоря; р — число пар полюсов; N — число проводников обмотки якоря; а — число пар параллельных ветвей. При работе машины в режиме генератора электромагнитный момент действует против вращения якоря, т.е. является тормозным.

Для привода генератора требуется электродвигатель мощность, которого должна покрыть все потери в генераторе:

где Р — полезная электрическая мощность генератора;
DРЯ — потери в обмотке якоря;
DРВ — потери в обмотке возбуждения;
DРМ — потери на намагничивание машины;
DРМЕХ — механические потери, связанные с трением вращающихся частей.

Коэффициент полезного действия генератора определяется отношением:

У современных генераторов постоянного тока коэффициент полезного действия составляет 90-92 %.

7.5. ДВИГАТЕЛЬ ПОСТОЯННОГО ТОКА

В соответствии с принципом обратимости машина постоянного тока может работать как в качестве генератора, так и в качестве двигателя. Уравнение ЭДС для двигателя составлено на основании 2-го закона Кирхгофа с учетом направления ЭДС:

откуда

Ток в цепи якоря:

В соответствии о формулой Еа = Се Ф n частота вращения определяется выражением:

Подставим значение Е из уравнения U = Е — IЯ RЯ, получим:

т.е. частота вращения двигателя прямо пропорциональна подведенному напряжению и обратно пропорциональна магнитному потоку возбуждения. Из этой формулы видно, что возможны пути регулирования частоты вращения двигателя постоянного тока: 1. Изменением напряжения сети U. Регулируя подаваемое напряжение Uсети можно менять частоту вращения.

Источник: https://tsput.ru/res/fizika/1/VOROPAEV_2/vorop7.htm

Тонкости настройки преобразователя частоты

Любой частотный преобразователь имеет ряд настроек, позволяющих задать необходимый режим разгона и торможения электродвигателя. В статье мы расскажем, какими параметрами можно управлять и как их оптимизировать, чтобы избежать поломки оборудования.

Основные параметры разгона/торможения двигателя

Минимальная выходная частота. Параметр, определяющий значение частоты, при котором начинается вращение двигателя. Повышенная минимальная частота во многих случаях позволяет уменьшить нагрев двигателя при разгоне.

Нижний предел выходной частоты. Этот параметр ограничивает частоту на выходе преобразователя. Нижний предел не может быть меньше минимальной выходной частоты. Данная настройка необходима для обеспечения защиты двигателя и механизмов в случае ошибочной установки минимальной рабочей частоты.

Максимальная выходная частота. Параметр ограничивает выходную частоту сверху. Причем заданное (номинальное) значение частоты может быть меньше, либо равным максимальной выходной частоте. Данное значение используется для расчета теоретического времени разгона, а также привязывается к максимальному значению управляющих сигналов на аналоговых входах.

Частота максимального напряжения (номинальная частота двигателя). Этот параметр задается в соответствии со значением, указанным на шильдике электродвигателя. Как правило, оно равно 50 Гц. При такой частоте на двигателе действует максимально возможное для данного преобразователя напряжение. Если данный параметр выставить меньше необходимого, то двигатель будет работать с перегрузкой и никогда не разгонится до номинальной частоты.

Время разгона. Основной параметр, определяющий расчетное время, за которое электродвигатель разгонится от нулевой до максимальной выходной частоты. Темп нарастания, как правило, линейный, если не задано квадратичное изменение частоты. В случае, если нарастание задается в промежуточном диапазоне (не от нулевой и не до максимальной частоты), реальное время будет меньше заданного. Это обстоятельство нужно учитывать при проектировании оборудования.

Например, если минимальная выходная частота равна нулю, а максимальная – 50 Гц, то при установке времени разгона 10 сек и максимальной выходной частоте 25 Гц фактическое время разгона будет в 2 раза меньше, т.е. 5 сек. То же относится и к торможению.

Инерция нагрузки

На реальное время разгона и замедления также влияют различные механические и электрические параметры системы электропривода. Например, при установке очень малого времени разгона или торможения фактическое время может быть больше из-за инерции нагрузки на валу двигателя.

Инерция нагрузки при разгоне может привести к перегрузке по току, при этом преобразователь частоты выходит в ошибку. Чтобы такого не произошло, время разгона нужно выбирать по нескольким критериям. Если данный параметр не принципиален, можно выставить автоматический разгон. В этом случае преобразователь будет выбирать максимальный скоростной режим разгона или замедления, чтобы избежать ошибки перегрузки по току (разгон) или перенапряжению на звене постоянного тока (замедление).

Когда время торможения должно быть минимальным, применяют тормозные резисторы для выделения «лишней» энергии, полученной в результате торможения.

Дополнительная инерция при разгоне и торможении может проявляться также при аналоговом способе задания выходной частоты. Это происходит, когда на аналоговом входе устанавливается низкочастотный фильтр для уменьшения помех, либо в настройках выставлена большая инерционность задающего аналогового сигнала.

Производители рекомендуют ограничить число пусков/остановов двигателя в единицу времени, поскольку при разгоне и торможении происходит наибольшая тепловая нагрузка на частотный преобразователь.

Во многих ПЧ имеется несколько вариантов времени разгона и торможения, которые можно применить для различных этапов технологического процесса. Переключение производится посредством подачи сигнала на соответственно запрограммированный дискретный вход.

Параметры на примере преобразователя Prostar PR6100

В частотном преобразователе Prostar PR6100 параметры настройки разгона/торможения находятся в меню и имеют следующие обозначения:

  • Р0.06 – верхний предел частоты
  • Р0.07 – нижний предел частоты
  • Р0.14 – время разгона
  • Р0.15 – время торможения
  • Р1.03 – номинальная частота двигателя

Другие полезные материалы:
Использование тормозных резисторов с ПЧ
Назначение сетевых и моторных дросселей
Настройка преобразователя частоты для работы на несколько двигателей
Назначение и виды энкодеров

Источник: https://tehprivod.su/poleznaya-informatsiya/tonkosti-nastrojki-preobrazovatelya-chastoty.html

Техника из Кореи 60 Гц — можно ли использовать в сети 50 Гц

Бытовая техника из Кореи или любая другая техника зарубежного производства нередко бывает предназначена для работы от электрической сети, частота переменного тока в которой составляет 60 Гц.

Естественно, у владельцев таких приборов возникает резонный вопрос – можно ли их использовать в России или других странах с частотой питающей сети 50 Гц? Ответ прост, как таблица умножения: можно! Но с учетом, что техника рассчитана на питание от сети с напряжением 220-230 Вольт.

Например, если на шильдике соковыжималки из Кореи указана рабочая частота 60 Гц, а напряжение 220-230V, то прибор будет исправно работать.

Откуда они вообще взялись?

Электрифицироваться мир начал в конце XIX-го – начале XX-го веков. В Америке у ее истоков стояли Эдисон и Вестингауз, Европу «приучали» к электроэнергетике в основном инженеры немецкой компании «Сименс». Стандартные частоты 50 и 60 Гц были выбраны, в общем-то, относительно случайно из диапазона 4060 Гц.

Вот границы диапазона были выбраны не случайно: при частоте ниже 40 Герц не могли работать дуговые лампы, бывшие в то время основным электрическим источником искусственного освещения, а при частоте выше 60 Гц – не работали асинхронные  электродвигатели конструкции Николы Теслы, наиболее распространенные в тот период

В Европе был выбран стандарт 50 Гц («золотая середина»!), у американцев прижился стандарт 60 Гц – на этой частоте стабильнее работали дуговые лампы.

Прошло больше века, дуговые лампы стали раритетом, а стандарты остались – и на работоспособности электрооборудования эта разница в 10 Гц практически не отражается.

Гораздо важнее напряжение в электрической сети – во многих странах оно примерно вдвое ниже, чем в России! А частота в Японии, например, в трети префектур установлен стандарт 60Гц,  в оставшихся двух третях – стандарт 50 Гц.

Можно? Можно!

Можно смело утверждать, что от частоты питающей электросети работоспособность бытовой техники не зависит.

С точки зрения физики вообще и электротехники – в частности, это вполне очевидно: у вала 60-герцового электромотора переменного тока, подключенного к сети 50 Гц, частота вращения уменьшится всего на несколько процентов; незначительно снизиться мощность самого электродвигателя. Иными словами, он станет работать в щадящем режиме – в тех же, например, шнековых соковыжималках холодного отжима это только к лучшему.

В приборах с двигателями постоянного тока частота питающей сети вообще не играет никакой роли – установленные в блоке питания выпрямительные диоды справляются с напряжением любой формы и «герцовости». Возникающая из-за изменения частоты питающей сети разность величин выпрямленных напряжений будет просто мизерной; к тому же, выпрямленное напряжение обычно стабилизируется электронной «начинкой» прибора.

Все вышесказанное абсолютно справедливо и для бытовой техники, имеющей встроенный или внешний импульсный блок питания.

Еще проще дело обстоит, если в состав блока питания входит обычный понижающий трансформатор – его выходные характеристики от изменения частоты напряжения в первичной обмотке изменяются незначительно.

Работоспособность еще одного типа приборов – нагревательных – вообще не зависит от частоты питающей электрической сети, для таких устройств куда большее значение имеет величина сетевого напряжения

Можно! Только внимательно!

Приборы, спроектированные для питания от сети с частотой 60 Гц, можно смело включать в электросеть с частотой 50 Гц.

Это, кстати, подтверждается одним не слишком известным фактом: если вскрыть какой-нибудь достаточно старый прибор с электромотором – пылесос, фен, миксер, соковыжималку холодного отжима – и внимательно прочитать надписи на шильдике двигателя, можно увидеть: «частота питающей сети 50-60 Гц»! Частота 60 Гц используется в технике из Кореи, США, Японии и некторых других стран. Поэтому если вы заказали, к примеру, соковыжималку из Кореи, то теперь вы знаете, что хоть её рабочая частота и отличается от наших сетей, подключать прибор можно!

Справедливости ради нужно отметить, что есть все же тип электроприборов, которые в отечественную электросеть лучше не включать – это электрооборудование, в котором используется однофазный асинхронный двигатель.

И дело тут даже не в том, что у таких электромоторов скорость вращения зависит не от частоты питающей сети, а от приложенной к валу нагрузки — дело в том, что из-за принципа своей работы асинхронные электродвигатели очень чувствительны к частоте сети при пуске.

Рассчитанный на 60 Гц «асинхронник» при 50 Гц просто не запустится К прмиеру, та же соковыжималка из Кореи может иметь те же 60 Гц в своих характеристиках, но если у неё отличается тип двигателя, то будьте готовы к тому, что прибор не включится. То же самое касается и любой техники из Кореи, Японии, США.

Вот на что ещё обязательно нужно обращать внимание при выборе техники из Кореи, Японии, Тайваня, США и ряда других стран  – на требования к величине питающего напряжения! Во многих странах, производящих технику (Корея, Япония и т.д.), электросети имеют рабочее напряжение 110 В, а не 220, как у нас.

Включить прибор, рассчитанный на 110 В, без переходного трансформатора можно только один раз – первый и последний в лучшем случае аппарат «перегорит», в худшем – взорвется прямо в руках! Поэтому сли соковыжималка из Кореи или другой страны, и имеет рабочее напряжение по своим характеристикам 110V, то такой прибор для наших сетей не годится.

Выбирая соковыжималку холодного отжима, обращайте внимание на рабочее напряжение прибора — оно должно быть 220V!

Техника для российских сетей

Для тех кого наша статья не показалась убедительной, на рынке есть аналоги самой востребованной техники, созданные специально для российских условий. Представляет такую технику марка RawMID с большим ассортиментом инновационных технологий для жизни.

Высокомощные блендеры, соковыжималки холодного отжима нового поколения, дегидраторы, проращиватели, ионизаторы, маслопрессы и многое другое можно приобрести в нашем интернет-магазине без опаски, что возникнет несоответствие с местными электросетями.

Товары этой марки имеют лучшее соотношение цены и качества, а также предлагают решения для частного сегмента и для малого бизнеса.

Источник: https://madeindream.com/articles/sokovyzhimalka-shnekovaya-60-ili-50-gerc-kupit.html

Преобразователи частоты

Основная информация о частотных преобразователях ALTIVAR и
устройствах плавного пуска ALTISTART Schneider Electric

ALTIVAR 12 ALTIVAR 21 ALTIVAR 212 ALTIVAR 31 ALTIVAR 312 ALTIVAR 61

Преобразователем частоты называют прибор, который, как следует из названия, преобразует входящее напряжение в импульсное. Если при входе напряжение составляет от 220 до 380 Вольт, а частота, 50 Герц, то на выходе модулятор преображает его в синусоидальный ток, где частота может быть 0-400 Гц. При помощи такого преобразования частоты и амплитуды напряжения, обеспечивается мягкое постепенное регулирование скорости вращения двигателя.

ЭТО ИНТЕРЕСНО:  Что такое скважность импульса

Главные возможности преобразователя

Инвертор обеспечивает плавный запуск и торможение электродвигателя, позволяя менять направление и регулировать скорость вращения вала.

Частотные преобразователи Schneider Electric

Преобразователи частоты Schneider Electric используются в комплекте с асинхронными и синхронными электродвигателями. Они обеспечивают изменение частоты переменного тока и помогают регулировать скорость двигателя.

С преобразователями частоты вы резко снижаете эксплуатационные расходы своей организации. Стоимость того количества энергии, которое один средний электродвигатель потребляет в год, в несколько раз превышает его цену.

А тарифы растут: платить по счётчикам приходится с каждым годом больше, расходы всё заметнее.

Спектр применения частотников от «Шнайдер Электрик» велик. Их используют на промышленных предприятиях и в зданиях коммерческого назначения, в сферах энергетики, коммунального хозяйства и т.д. Это оборудование стоит приобрести, если требуется создать:

  • ● современную систему обогрева;
  • ● установку кондиционирования воздуха;
  • ● вентиляционную систему;
  • ● систему насосных агрегатов;
  • ● cистему транспортировки (с конвейерами, лифтами и т.д.).

Частотные преобразователи для электродвигателей особенно хорошо зарекомендовали себя на тех предприятиях, где важна эффективная транспортировка жидкостей. Эти устройства позволяют снизить расходы при водоподготовке, водоснабжении и водоотведении.

Преимущества преобразователей частоты от «Шнайдер» Schneider Electric обеспечивает:

  • ● Оптимальный режим работы электрооборудования, защиту от перегрузок и других внештатных ситуаций.
  • ● Гибкий план ТО: состояние компонентов постоянно отслеживается системой, при неисправностях оператору поступает уведомление.
  • ● Простоту введения в эксплуатацию. Преобразователь частоты от “Шнайдер Электрик» легко встраивается в существующие системы и адаптируется с ними, его просто модифицировать.
  • ● Удобное управление: на каждой модели стоят выносные терминалы. Разные степени защиты – классические IP21 и IP23, более специфические UP54, IP64 и т.д.
  • ● Общую продолжительность жизненного цикла в 20 лет, на каждом этапе которого предоставляется сервисное обслуживание.
  • ● Минимальные расходы при эксплуатации за счёт качественных систем мониторинга.

Габариты преобразователей частоты различны: есть компактные варианты 144х350х206, а напольные устройства могут занимать 400-1200 мм в ширину и 2150 в высоту. Есть возможность подобрать и комплектные «книжные» форматы корпуса. Монтировать устройства можно без оболочки, а есть модели для установки в шкаф.

Автоматизация, мониторинг и диагностика

«Шнайдер» уделяет автоматизации управления и удобству контроля не меньше внимания, чем техническим характеристикам самих частотников. Поэтому частотные преобразователи Schneider Electric снабжены системой мониторинга и диагностики. Передача данных в систему управления производится через порт Ethernet, работает интегрированный веб-сервер.

  • ● Открыть систему мониторинга можно с компьютера, планшета или смартфона. При этом:
  • ● для операторов все данные выводятся на монитор и постоянно обновляются без задержек;
  • ● для гаджетов предусмотрено специальное приложение, поэтому управлять технологическим процессом можно прямо из дома или из машины;
  • ● для сотрудников можно настроить в приложении уровни доступа к тем или иным функциям;
  • ● ПО снабжено киберзащитой: вероятность перехвата управления или выведения из строя системы мониторинга исключена;
  • ● документация и справочные материалы доступны по QR-коду, размещённому на терминале: не нужно тратить время на самостоятельный поиск информации;
  • ● даже при разрыве соединения срок простоя будет минимален благодаря надёжным сетевым технологиям;
  • ● возможен обмен данными между несколькими преобразователями с целью контроля за всем оборудованием в комплексе.
  • ● В приложениях выводятся данные энергопотребления и другая информация на дополнительных инфопанелях. Всё это позволяет оптимизировать энергопотребление: абсолютно каждый элемент под контролем, а все значения регулируются.

В чем проявляется экономия при использовании перобразователей частоты?

Эффект экономии при введении состоит из таких пунктов:

  • ● снижение потребления электроэнергии до 50% в приборах, работающих с насосами, вентиляторами или компрессорными устройствами;
  • ● электродвигатель повышает срок службы, поскольку регулирование осуществляется менее затратными способами;
  • ● повышается качество производимых товаров;
  • ● увеличиваются объемы производства и производительности оборудования;
  • ● значительно снижается износ механических элементов, поскольку улучшается динамика самих приборов.

Купить частотный преобразователь — инвертор в «НЭК»

Частотники «Шнайдер» делают технологические процессы проще, сокращают расходы и продлевают срок службы двигателя. Их стоимость отбивается в течение первого года, поэтому купить частотный преобразователь этой марки – рациональное решение.

Источник: https://www.nek2000.ru/preobrazovately-chastoty/

Как измерить частоту переменного тока?

Вы здесь: Не так часто приходится узнавать именно частоту переменного тока, по сравнению с такими показателями, как напряжение и сила тока. Например, для того чтобы измерить силу тока можно воспользоваться измерительными клещами, для этого даже необязательно контактировать с токопроводящими частями, да и напряжение проверяет любой стрелочный или цифровой мультиметр.

Однако, чтобы проверить частоту, с какой меняется полярность в цепях переменного тока, то есть количество его полных периодов, используется частотомер. В принципе, прибор с таким же названием может измерять и количество механических колебаний за определённый период времени, но в этой статье речь пойдёт исключительно об электрической величине.

Далее мы расскажем, как проводится измерение частоты переменного тока мультиметром и частотомером.

Классификация частотомеров

Все данные приборы делятся на две основные группы по области их применения:

  1. Электроизмерительные. Применяются для бытового или же производственного измерения частоты в цепях переменного тока. Их используют при частотной регулировке оборотов асинхронных двигателей, так как вид частотного измерения оборотов, в этом случае, самый эффективный и распространённый.
  2. Радиоизмерительные. Нашли применение исключительно в радиотехнике и могут измерять широкий диапазон высокочастотного напряжения.

По конструкции частотомеры делятся на щитовые, стационарные и переносные. Естественно, переносные более компактные, универсальные и мобильные устройства, которые широко применяются радиолюбителями.

Для любого типа частотомера самыми важными характеристиками, на которые, в принципе, и должен обращать внимание человек при покупке, являются:

  • Диапазон частот, которые прибор сможет измерить. При планировании работы именно со стандартной промышленной величиной 50 Гц, нужно внимательно ознакомиться с инструкцией, так как не все приборы её смогут увидеть.
  • Рабочее напряжение в цепях, в которых будут проходить измерительные работы.
  • Чувствительность, эта величина более важна для радиочастотных устройств.
  • Погрешность, с которой он может производить замеры.

Мультиметр с функцией измерения частоты переменного тока

Самый распространенный прибор, с помощью которого можно узнать величину частотных колебаний и который находится в свободном широком доступе — это мультиметр. Нужно обращать своё внимание на его функциональные возможности, так как не каждый такой прибор сможет измерить частоту переменного тока в розетке или же другой электрической цепи.

Такой тестер выполняется чаще всего очень компактным, для того чтобы в сумке он легко помещался, и был максимально функциональным, измеряющим помимо частоты также напряжение, ток, сопротивление, а иногда даже температуру воздуха, ёмкость и индуктивность. Современный вид мультиметра и его схема основаны чисто на цифровых электронных элементах, для более точного измерения. Состоит такой мультиметр из:

  • Жидкокристаллического информативного индикатора для отображения результатов измерения, расположенного, чаще всего, в верхней части конструкции.
  • Переключателя, в основном, он выполнен в виде механического элемента, позволяющего быстро перейти от измерения одних величин к другим. Нужно быть очень осторожным, так как, допустим, если измерять напряжение, а переключатель будет стоять на отметке «I», то есть сила тока, тогда следствием этого неминуемо будет короткое замыкание, которое приведёт не только к выходу со строя прибора, но может вызвать и термический ожог дугой рук и лица человека.
  • Гнезд для щупов. С их помощью непосредственно происходит электрическая связь прибора с измеряемым токопроводящим объектом. Провода не должны иметь потрескиваний и изломов изоляции, особенно это касается их наконечников, которые будут находиться в руках измеряющего.

Хотелось бы также упомянуть о специальных приставках к мультиметру, которые существуют и разработаны специально для того, чтобы увеличить число функций обычного прибора со стандартным набором.

Как выполняется измерение частоты

Перед тем как пользоваться мультиметром, а в частности, частотомером, внимательно нужно ознакомиться ещё раз с теми параметрами, которые он имеет возможность измерять. Для того чтобы правильно произвести их замер нужно освоить несколько этапов:

  1. Включить прибор соответствующей кнопкой на корпусе, чаще всего она выделена ярким цветом.
  2. Установить переключатель на измерение частоты переменного тока.
  3. Взяв в руки два щупа и подключив их, согласно инструкции в соответствующие гнёзда, произведём опробование измерительного устройства. Для начала нужно попробовать узнать частоту напряжения в стандартной сети 220 Вольт, она должна равняться 50 Гц (отклонение может быть в несколько десятых). Эта величина чётко контролируется поставщиком электрической энергии, так как при её изменении могут выйти из строя электроприборы. Поставщик отвечает за качество предоставляемой электроэнергии и строго соблюдает все её параметры. Кстати, такая величина является стандартной не во всех странах. Присоединив выводы частотомера к выводам розетки, на приборе высветится величина около 50 Гц. Если показатель будет отличаться, то это будет его погрешностью и при следующих измерениях это нужно будет обязательно учесть.

Далее, можно смело производить необходимые замеры, помня что частота есть только у переменного вида напряжения, постоянный ток не имеет изменяющегося периодически значения.

Другие альтернативные методы измерения

Самый эффективный и простой способ проверки частоты — это использование осциллографа. Именно осциллографом пользуются все профессиональные электронщики, так как на нём можно визуально увидеть не только цифры, но и саму диаграмму. При этом нужно обязательно отключить встроенный генератор. Новичку в электронике будет довольно проблематично выполнить данные измерения с помощью этого прибора. О том, как пользоваться осциллографом, мы рассказали в отдельной статье.

Второй вариант — это измерение с помощью конденсаторного частотомера, имеющего диапазон измерений 10 Гц-1 МГц и погрешность около 2%. Он определяет среднее значение тока разрядки и зарядки, которое будет пропорционально частоте и измеряется косвенно с помощью магнитоэлектрического амперметра, со специальной шкалой.

Ещё один метод называется резонансный и основан он на явлении резонанса, возникающего в электрическом контуре. Тоже имеет шкалу с механизмом точной подстройки. Однако промышленную величину в 50 Гц этим способом невозможно проверить, работает он от 50 000 Гц.

Также вы должны знать, что существует реле частоты. Обычно на предприятиях, подстанциях, электростанциях — это основное устройство, которым контролируют изменение частоты. Данное реле воздействует на другие устройства защиты и автоматики для поддержания частоты на необходимом уровне. Есть разные типы реле частоты с разным функционалом, об этом мы расскажем в других публикациях.

Все же мультиметры и электронные цифровые частотомеры работают на обычном счёте импульсов, которые являются неотъемлемой частью, как импульсного так и другого переменного напряжения, необязательно синусоидального за определенный промежуток времени, обеспечивая при этом максимальную точность, а также широчайший диапазон.

Напоследок рекомендуем просмотреть полезное видео по теме:

Теперь вы знаете, как выполнить измерение частоты тока в сети мультиметром и частотомером. Надеемся, предоставленная информация была для вас полезной!
Будет интересно прочитать:

  • Как проверяют электроинструмент и для чего это нужно?
  • Что такое фазометр и как им пользоваться?
  • Что такое фазоуказатель и как им пользоваться?

  • Источник: https://samelectrik.ru/kak-izmerit-chastotu-peremennogo-toka.html

    Частотные преобразователи. Работа и устройство. Типы и применение

    Ротор электродвигателя начинает свое вращение с помощью электромагнитных сил от вращающегося магнитного поля, вызванного обмоткой якоря. Число оборотов определяется частотой тока в сети. Стандартное значение частоты тока составляет 50 герц. Это означает, что 50 периодов колебаний совершается за 1 секунду. В минуту число колебаний составит 50 х 60 = 3000. Значит, ротор будет вращаться 3000 оборотов в минуту.

    Если научиться изменять частоту тока, то появится возможность регулировки скорости двигателя. Именно по этому принципу действуют частотные преобразователи.

    Современное исполнение преобразователей частоты выглядит в виде высокотехнологичного устройства, состоящего из полупроводниковых приборов, совместно с микроконтроллером электронной системы. С помощью этой системы управления изменяются важные параметры электродвигателя, например, число оборотов.

    Изменить скорость привода можно и с помощью механического редуктора шестеренчатого типа, либо на основе вариатора. Но такие механизмы имеют громоздкую конструкцию, их нужно обслуживать. С использованием частотника (инвертора) снижается расход на техническое обслуживание, повышается функциональность привода механизма.

    По конструктивным особенностям частотные преобразователи делятся:

    • Индукционные.
    • Электронные.

    Электродвигатели асинхронного типа с фазным ротором, подключенные в режим генератора, представляют подобие индукционного частотного преобразователя. Они имеют малые КПД и эффективность. В связи с этим такие виды преобразователей не нашли популярности в использовании.

    Электронные виды частотников дают возможность плавного изменения оборотов электродвигателей.

    При этом реализуются два возможных принципа управления:

    1. По определенной зависимости скорости от частоты тока.
    2. По способу векторного управления.

    Первый принцип самый простой, но не совершенный. Второй принцип применяется для точного изменения оборотов двигателя.

    Частотные преобразователи имеют в составе основные модули:

    • Выпрямитель.
    • Фильтр напряжения.
    • Инверторный узел.
    • Микропроцессорная система.

    Все модули связаны между собой. Действие выходного каскада (инвертора) контролирует блок управления, с помощью которого меняются свойства переменного тока.

    Частотный преобразователь для электромотора имеет свои особенности. В его состав входит несколько защит, управление которыми осуществляется микроконтроллером. Например, проверяется температура полупроводников, работает защита от превышения тока и короткого замыкания. Частотник подключается к сети питания через устройства защиты.

    Для запуска электродвигателя не нужен магнитный пускатель.

    Выпрямитель

    Это первый модуль, по которому проходит ток. Он преобразует переменный ток в постоянный, благодаря полупроводниковым диодам. Особенностью частотника является возможность его питания от однофазной сети. Разница в конструкции состоит в разных типах выпрямителей.

    Если мы говорим про однофазный частотник для двигателя, то нужно использовать в выпрямителе четыре диода по мостовой схеме. При трехфазном питании выбирается схема из шести диодов. В итоге получается выпрямление переменного тока, появляется два полюса: плюс и минус.

    Фильтр напряжения

    Из выпрямителя выходит постоянное напряжение, которое имеет значительные пульсации, заимствованные от переменного тока. Для их сглаживания используют такие элементы, как электролитический конденсатор и катушка индуктивности.

    Катушка имеет много витков, и обладает реактивным сопротивлением. Это дает возможность сглаживать импульсы тока. Конденсатор, подключенный к двум полюсам, имеет интересные характеристики. При прохождении постоянного тока он в силу закона Киргофа должен быть заменен обрывом, как будто между полюсами ничего нет. При прохождении переменного тока он должен быть проводником, то есть, не иметь сопротивления. В результате доля переменного тока замыкается и исчезает.

    ЭТО ИНТЕРЕСНО:  Что такое сила ампера

    Инверторный модуль

    Это узел, имеющий наибольшую важность в преобразователе частоты. Он изменяет параметры тока выхода, состоит из шести транзисторов. Для каждой фазы подключены по два транзистора. В каскаде инвертора применяются современные транзисторы IGBT.

    Если изготавливать частотные преобразователи своими руками, то необходимо выбирать элементы конструкции, исходя из мощности потребления. Поэтому нужно сразу определить тип электродвигателя, который будет питаться от частотника.

    Микропроцессорная система

    В самодельной конструкции не получится добиться таких параметров, имеющихся у заводских моделей, так как в домашних условиях сделать управляющий модуль сложно. Дело не в пайке деталей, а в создании программы для микроконтроллера. Простой способ – это сделать управляющий блок, которым можно регулировать обороты двигателя, осуществлять реверс, защищать двигатель от перегрева и перегрузки по току.

    Чтобы изменить обороты мотора, нужно применить переменное сопротивление, подключенное к вводу микроконтроллера. Это устройство подает сигнал на микросхему, которая производит анализ изменения напряжения и сравнивает его с эталоном (5 вольт). Система действует по алгоритму, который создается до начала создания программы. По нему действует микропроцессорная система.

    Приобрели большую популярность управляющие модули Siemens. Частотные преобразователи этой фирмы надежны, могут применяться для любых электродвигателей.

    Принцип действия

    Основа работы инвертора состоит в двойном изменении формы электрического тока.

    Напряжение подается на блок выпрямления с мощными диодами. Они удаляют гармонические колебания, однако оставляют импульсы сигнала. Чтобы их удалить, подключен конденсатор с катушкой индуктивности, образующие фильтр, который стабилизирует форму напряжения.

    Далее, сигнал идет на частотный преобразователь. Он состоит из шести мощных транзисторов с диодами, защищающими от пробоя напряжения. Ранее для таких целей применялись тиристоры, но они не обладали таким быстродействием, и создавали помехи.

    Чтобы подключить режим замедления мотора, в схему устанавливают транзистор управления с резистором, который рассеивает энергию. Такой способ дает возможность удалять образуемое двигателем напряжение, чтобы защитить емкости фильтра от выхода из строя вследствие перезарядки.

    Метод управления векторного типа частотой инвертора дает возможность создания схемы, которая автоматически регулирует сигнал. Для этого применяется управляющая система:

    • Амплитудная.
    • Широтно-импульсная.

    Амплитудная регулировка работает на изменении напряжения входа, а ШИМ – порядка действия переключений транзисторов при постоянном напряжении на входе.

    При регулировании ШИМ образуется период модуляции, когда обмотка якоря подключается по очереди к выводам выпрямителя. Так как тактовая частота генератора высокая и находится в интервале 2-15 килогерц, то в обмотке мотора, имеющего индуктивность, осуществляется сглаживание напряжения до нормальной синусоиды.

    Принцип подключения ключей на транзисторах

    Каждый из транзисторов включается по встречно-параллельной схеме к диоду (Рис. 1). Через цепь транзистора протекает активный ток электродвигателя, реактивная часть поступает на диоды.

    Чтобы исключить влияние помех на действие инвертора и электродвигателя, в схему подключают фильтр, который удаляет:

    • Радиопомехи.
    • Помехи от электрооборудования.

    Об их образовании дает сигнал контроллер, чтобы снизить помехи, применяются экранированные провода от двигателя до выхода инвертора.

    Чтобы оптимизировать точность функционирования асинхронных двигателей, в цепь управления инверторов подключают:

    • Ввод связи.
    • Контроллер.
    • Карта памяти.
    • Программа.
    • Дисплей.
    • Тормозной прерыватель с фильтром.
    • Охлаждение схемы вентилятором.
    • Прогрев двигателя.

    Схемы подключения

    Частотные преобразователи служат для работы в 1-фазных и 3-фазных сетях. Но если имеются промышленные источники питания на 220 вольт постоянного тока, то инверторы также можно подключать к ним.

    Частотные преобразователи для 3-фазной сети рассчитаны на 380 вольт, их подают на мотор. 1-фазные частотники работают от сети 220 вольт, выдают на выходе 3 фазы. Частотник может подключаться к электродвигателю по схеме звезды или треугольника.

    Обмотки мотора соединяются в «звезду» для частотника, работающего от трех фаз 380 вольт.

    Обмотки двигателя соединяют «треугольником», когда инвертор запитан от 1-фазной сети.

    При выборе метода подключения электродвигателя к частотнику необходимо определить мощности, которые создает двигатель на разных режимах, в том числе и медленный режим, тяжелый запуск. Преобразователь частоты нельзя эксплуатировать с перегрузкой длительное время. Его мощность должна быть с запасом, тогда работа будет без аварий, и срок службы продлится.

    Применение

    Частотные преобразователи используются в устройствах с необходимостью регулировки скорости двигателя.

    • Приводы насосов. Уменьшает потери тепла и воды на 10%. Снижает количество аварий, защищает электродвигатели.
    • Вентиляционные системы. Экономия больше, чем при работе с насосами, так как для запуска мощных вентиляторов применяют мощные приводы агрегатов. Экономия появляется за счет снижения потерь на холостом ходу.
    • Транспортеры. Инверторы адаптируют скорость двигателя к скорости технологической системы, которая постоянно изменяется. Мягкий пуск повышает ресурс привода системы, так как нет ударных нагрузок, которые вредят оборудованию.
    • Компрессоры.
    • Дымососы.
    • Центрифуги.
    • Лифтовое оборудование.
    • Оборудование в деревообработке.
    • Робототехника.

    Преимущества

    • Сглаживание работы мотора при запуске и торможении.
    • Возможность управления группой двигателей.
    • Плавное управление скоростью электродвигателей, без использования редукторов и других механических систем. Это позволяет упростить управление, сделать его дешевле и надежнее.
    • Используются совместно с асинхронными двигателями для замены приводов постоянного тока.
    • Образование многофункциональных систем управления приводами.
    • Изменение настроек непосредственно в работе, без останова.

    Похожие темы:

    Источник: https://electrosam.ru/glavnaja/jelektrooborudovanie/ustrojstva/chastotnye-preobrazovateli/

    Как повысить КПД электродвигателя: выбираем оптимальное решение

    Несмотря на высокую эффективность современных электромеханических преобразователей, в процессе их работы все же возникают потери магнитной, электрической и механической энергии, сопровождающиеся выделением тепла, усилением шума и вибрации.

    Это обусловлено трением элементов, перемагничиванием в магнитном поле сердечника якоря электродвигателя, скачками нагрузок Можно ли минимизировать эти «утечки», повысив тем самым КПД, и если да, то как этого добиться? Об этом мы и поговорим в данной статье.

    Современные подходы к повышению КПД асинхронных двигателей

    Согласно общепринятой классификации электрические машины бывают синхронными — с одинаковой частотой вращения ротора и магнитного поля, и асинхронными — в которых магнитное поле вращается с более высокой скоростью, чем ротор.

    Электродвигатели последнего типа получили более широкое распространение: порядка 90% всех двигателей на планете являются асинхронными. Они применяются во всех отраслях промышленности, сельского хозяйства и сферы ЖКХ.

    Такая популярность объясняется тем, что данные механизмы просты в изготовлении, надежны, доступны по цене и не требуют больших эксплуатационных затрат. Кроме того, КПД асинхронного электродвигателя значительно выше, чем синхронного.

    Но есть у подобной техники и существенные недостатки.

    В частности, высокий пусковой ток, недостаточный пусковой момент, несогласованность механического момента на валу привода с механической нагрузкой (что приводит к лавинообразному росту силы тока и избыточным механическим нагрузкам при запуске и снижению КПД в периоды пониженной нагрузки), невозможность точной регулировки скорости работы прибора и т.д. Все эти факторы приводят к тому, что эффективность работы механизма существенно снижается.

    На заметку
    Ключевыми факторами, влияющими на КПД электродвигателя, являются степень его загрузки по отношению к номинальной, конструкция, модель, степень износа, отклонение напряжения в сети от номинального. Также КПД электродвигателя может заметно снизиться после его перемотки.

    Для повышения эффективности работы электропривода необходимо обеспечивать его загрузку на уровне не менее 75%, увеличивать коэффициент мощности, регулировать напряжение и где возможно — частоту подаваемого тока. Реализация этих мер обеспечивается использованием специального оборудования, позволяющего повысить КПД электродвигателя. Однако не во всех случаях возможно или необходимо реализовать их все.

    Такие приборы подразделяются на частотные преобразователи, которые изменяют скорость вращения двигателя путем изменения частоты питающего напряжения, а также устройства плавного пуска, ограничивающее скорость нарастания пускового тока и его максимальное значение. В этой статье мы сравним современные решения для повышения КПД двигателей с позиций эффективности работы и экономической целесообразности.

    Частотные преобразователи для асинхронных двигателей

    Одним из наиболее действенных средств повышения эффективности работы электродвигателя является частотный преобразователь, который трансформирует однофазное или трехфазное напряжение с частотой 50 Гц в напряжение с требуемой частотой (обычно от 1 Гц до 300–400 Гц, но иногда и до 3000 Гц) и амплитудой.

    Принцип работы преобразователя частоты

    «Частотник» (так в профессиональной среде называют преобразователь частоты) состоит из:

    1. Микропроцессора, обеспечивающего управление электронными ключами, а также контроль работы оборудования, его диагностику и защиту.
    2. Схем, функционирующих в режиме ключей и открывающих тиристоры или транзисторы. Несколько более эффективными считаются тиристорные преобразователи частоты, так как они могут работать с высокими напряжениями и токами и имеют КПД до 98%. Однако при не слишком больших мощностях это преимущество практически незаметно.

    Существует два класса приборов в зависимости от устройства и принципов работы:

    1. С непосредственной связью. Такие преобразователи представляют собой выпрямители. Система осуществляет отпирание тиристоров и подключение обмотки к сети, в результате чего образуется выходное напряжение с частотой 0–30 Гц и ограниченным диапазоном управления скоростью вращения привода. Такие устройства не могут использоваться при оснащении мощного оборудования, регулирующего множество технологических параметров.
    2. С промежуточным звеном постоянного тока. В подобных аппаратах производится двойное преобразование энергии: входное напряжение выпрямляется, затем фильтруется и сглаживается, а потом при помощи инвертора снова трансформируется в напряжение с необходимой амплитудой и частотой. Подобное преобразование может несколько снижать КПД оборудования, но такие преобразователи частоты имеют широкое применение в силу того, что могут давать на выходе напряжение с высокой частотой.

    Наибольшую популярность получили устройства второго типа, обеспечивающие плавную регулировку оборотов двигателей.

    Возможности частотных преобразователей

    Эффективность того или иного преобразователя во многом зависит от соответствия его функциональных возможностей целям использования. Так, для оснащения электроприводов насосов и вентиляторов используются преобразователи с невысокой перегрузочной способностью и зачастую с U/f-управлением, которые при необходимости могут повышать начальное значение выходного напряжения с целью увеличения момента двигателя на низких частотах.

    Более совершенными являются устройства с векторным управлением, которые регулируют не только частоту и амплитуду выходного напряжения, но и фазы тока, протекающего через обмотки статора. Они устанавливаются на прокатные станы, конвейеры, подъемное, упаковочное оборудование и др.

    Если необходимо выполнять контролируемое торможение двигателя, используется функция замедления, которая обеспечивают остановку механизма за счет изменения частоты до нужного уровня.

    Однако, если требуется интенсивное замедление, может понадобиться «частотник», оснащенный встроенными или внешними блоком торможения и тормозным резистором либо рекуперативным блоком торможения.

    В режиме динамического торможения двигатель переходит в генераторный режим и трансформирует механическую энергию в электрическую, которая возвращается в звено постоянного тока и либо рассеивается в виде тепла на сопротивлении тормозного резистора, либо возвращает энергию в сеть посредством рекуперации. Это решение актуально для станкового и конвейерного оборудования.

    Частотный преобразователь с обратной связью позволяет поддерживать постоянную скорость вращения при переменной нагрузке с более высокой точностью, чем преобразователь без обратной связи, тем самым повышая качество технологического процесса в замкнутых системах. Такие устройства используются в робототехнике, дерево- и металлообработке, в системах высокоточного позиционирования.

    Стоимость

    В последнее время стоимость «частотников», как бы выразились финансисты, подвержена высокой волатильности — за год–полтора цены увеличились более чем в 2 раза, что объясняется колебаниями валютного курса. Частотные преобразователи российского и зарубежного производства мощностью порядка 90 кВт в январе-феврале 2017 года обходятся покупателям в 375–685 тысяч рублей.

    Достоинства и недостатки

    Таким образом, преобразователь частоты для асинхронного двигателя, принцип работы которого описан выше, обеспечивает снижение расхода электроэнергии, плавный запуск привода и высокую точность регулировки, увеличивает пусковой момент и стабилизирует скорость вращения при переменной нагрузке. Все это в совокупности позволяет повысить коэффициент полезного действия машины. К недостаткам «частотника» можно отнести его высокую стоимость, а также создание электромагнитных помех в процессе работы.

    Устройства плавного пуска: контроллеры-оптимизаторы

    Для обеспечения плавного запуска, разгона и остановки электродвигателя используются устройства плавного пуска (УПП). Эти приборы ограничивают скорость увеличения пускового тока в течение определенного времени.

    Традиционные устройства плавного пуска не решают задачу повышения КПД. Кроме того, они могут применяться только для управления приводами с небольшой нагрузкой на валу.

    Однако сегодня существуют разновидности УПП, позволяющие повысить энергоэффективность двигателей путем согласования крутящего момента с моментом нагрузки и, как следствие, снижения потребления электроэнергии на минимальных нагрузках на 30–40% — это контроллеры-оптимизаторы. Последние предназначены для приводов, не нуждающихся в изменении числа оборотов двигателя.

    Например, чтобы снизить энергопотребление эскалатора при помощи преобразователя частоты, потребовалось бы уменьшить его скорость, но это невозможно, потому что тогда подъем пассажиров потребует более продолжительного времени. А контроллеры-оптимизаторы позволяют снизить энергопотребление без изменения скорости электропривода в тех случаях, когда он недогружен.

    Принцип работы

    Контроллеры-оптимизаторы — это регуляторы напряжения питания электродвигателя, осуществляющие контроль за фазами тока и напряжения. Они обеспечивают полное управление приводом на всех этапах работы и защищают его от повышенного и пониженного напряжения, перегрузки, обрыва или нарушения чередования фаз и т.д.

    Контроллеры-оптимизаторы согласуют значение крутящего механического момента, развиваемого электродвигателем, со значением механического момента нагрузки на его валу за счет изменения напряжения питания двигателя. При этом скорость вращения ротора электродвигателя остается прежней, а коэффициент мощности повышается.

    Это оборудование является функционально законченным и не требует подключения дополнительных устройств.

    При работе привода в режиме динамично меняющихся нагрузок контроллер обеспечивает прекращение отбора мощности из питающей сети в те моменты, когда полупроводниковые переходы тиристоров (управляемых диодов) закрыты, то есть не пропускают электрический ток. Тиристоры открываются при поступлении управляющих импульсов, задержка подачи которых определяется степенью загрузки привода, а закрываются при переходе тока через ноль.

    Важно!
    Скорость реакции контроллера-оптимизатора на изменение нагрузки составляет сотые доли секунды.

    Возможности

    Контроллеры-оптимизаторы обеспечивают повышение КПД дробилок, вентиляторов, ленточных транспортеров, обрабатывающих станков, крутильных агрегатов, лебедок и другого оборудования, используемого в промышленности, сельском хозяйстве и сфере ЖКХ.

    В том числе эти устройства предотвращают перегрузки кронштейнов при запуске мешалок, нейтрализуют гидроудары в трубопроводах, обеспечивают плавный запуск тяжело и очень тяжело нагруженного оборудования, на что не способны обычные устройства плавного пуска, и др.

    Выбираем лучшее решение для повышения КПД

    Выбор устройства для повышения КПД двигателя того или иного электропривода определяется особенностями работы оборудования. Так, если скорость привода нужно изменять, то единственно возможным решением является покупка преобразователя частоты. Если скорость вращения двигателя менять нельзя или это делать необязательно, то лучшим решением будет использование контроллеров-оптимизаторов, которые имеют более доступную стоимость, чем «частотники».

    Источник: https://www.kp.ru/guide/asinkhronnyi-ielektrodvigatel.html

    Понравилась статья? Поделиться с друзьями:
    220 вольт