Как проверить катушку индуктивности

Как замерить индуктивность катушки мультиметром

как проверить катушку индуктивности

При работе с любыми электроприборами или токопроводящими деталями, наличие измерительной аппаратуры является необходимым, будь то амперметр, вольтметр или омметр. Но для того чтобы не покупать все эти устройства, лучше обзавестись мультиметром.

Мультиметр является универсальным измерительным аппаратом, который позволяет измерить любую характеристику электричества. Мультиметры бывают аналоговые и цифровые.

Аналоговый мультиметр

Данный тип мультеметров отображает показания измерений при помощи стрелки, под которой установлено табло с различными шкалами значений. Каждая шкала отображает показания того или иного измерения, которые подписаны непосредственно на табло.

Но для новичков такой мультиметр будет не самым лучшим выбором, поскольку разобраться во всех обозначениях, которые находятся на табло довольно трудно. Это может привести к не правильному пониманию результатов измерения.

Цифровой мультиметр

В отличие от аналоговых, этот мультиметр позволяет с легкостью определять интересуемые величины, при этом его точность измерений гораздо выше по сравнению со стрелочными аппаратами.

Также наличие переключателя между различными характеристиками электричества исключает возможность перепутать то или иное значение, поскольку пользователю не нужно разбираться в градации шкалы показаний.

Результаты измерений отображаются на дисплее (в более ранних моделях – светодиодных, а в современных – жидкокристаллических). За счет этого цифровой мультиметр комфортен для профессионалов и прост и понятен в использовании для новичков.

Измеритель индуктивности для мультиметра

Несмотря на то, что определять индуктивность при работе с электроникой приходится редко, это все же иногда необходимо, а мультиметры с измерением индуктивности найти достаточно трудно. В данной ситуации поможет специальная приставка к мультиметру, позволяющая измерить индуктивность.

Зачастую для подобной приставки используется цифровой мультиметр установленный на измерение напряжения с порогом точности измерения в 200 мВ, который можно приобрести в любом магазине электро и радиоаппаратуры в готовом виде. Это позволит сделать простую приставку к цифровому мультиметру.

Сборка платы приставки

Собрать приставку-тестер к мультиметру для измерения индуктивности можно без особых проблем в домашних условиях, обладая базовыми знаниями и навыками в области радиотехники и пайки микросхем.

В схеме платы можно применять транзисторы КТ361Б, КТ361Г и КТ3701 с любыми буквенными маркерами, но для получения более точных измерений лучше использовать транзисторы с маркировкой КТ362Б и КТ363.

Эти транзисторы устанавливаются на плате в позициях VT1 и VT2. На позиции VT3 необходимо установить кремневый транзистор со структурой p-n-p, например, КТ209В с любой буквенной маркировкой. Позиции VT4 и VT5 предназначены для буферных усилителей.

Подойдет большинство высокочастотных транзисторов, с параметрами h21Э для одного не меньше 150, а для другого более 50.

Для позиций VD и VD2 подойдут любые высокочастотные кремневые диоды.

Резистор можно выбрать МЛТ 0,125 или аналогичный ему. Конденсатор С1 берется с номинальной емкостью 25330 пФ, поскольку он отвечает за точность измерений и ее значение стоит подбирать с отклонением не более 1%.

Такой конденсатор можно сделать объединив термостабильные конденсаторы разной емкости (например, 2 на 10000 пФ, 1 на 5100 пФ и 1 на 220 пФ). Для остальных позиций подойдут любые малогабаритные электролитические и керамические конденсаторы с допустимым разбросом в 1,5-2 раза.

Контактные провода к плате (позиция Х1) можно припаять или подключать при помощи пружинящих зажимов для «акустических» проводов. Разъем Х3 предназначен для подключения приставки к мультиметру (частотомеру).

Проводу к «бананам» и «крокодилам» лучше взять короче, что бы уменьшить влияние их собственной индуктивности на показания замеров. В месте припаивания проводов к плате, соединение стоит дополнительно зафиксировать каплей термоклея.

При необходимости регулирования диапазона измерений на плату можно добавить разъем для переключателя (например, на три диапазона).

Корпус приставки к мультиметру

Корпус можно сделать из уже готового короба подходящего размера или сделать короб самостоятельно. Материал можно выбрать любой, например, пластик или тонкий стеклотекстолит. Короб делается под размер платы, и в нем подготавливаются отверстия для ее крепления. Также делаются отверстия для подключения проводки. Все фиксируется небольшими шурупами.

Питание приставки осуществляется от сети при помощи блока питания с напряжением в 12 В.

Настройка измерителя индуктивности

Для того чтобы откалибровать приставку для измерения индуктивности понадобятся несколько индукционных катушек с известной индуктивность (например, 100 мкГн и 15 мкГн).

Катушки по очереди подключаются к приставке и, в зависимости от индуктивности, движком подстроечного резистора на экране мультиметра выставляется значение 100,0 для катушки на 100 мкГн и 15 для катушки на 15 мкГн с точностью 5%.

Источник: https://hd01.ru/info/kak-zamerit-induktivnost-katushki-multimetrom/

Проверка дросселя, трансформатора, реле

как проверить катушку индуктивности

Как проверить дроссель, обмотки трансформатора, катушки индуктивности, электромагнитное реле. Методика испытаний (10+)

Проверка дросселя, трансформатора, реле

Оглавление :: ПоискТехника безопасности :: Помощь

Материал является пояснением и дополнением к статье:
Проверка электронных элементов, радиодеталей. Применение б/у
Как проверить исправность детали. Методика испытаний. Какие детали можно использовать б/у.

Обмотки катушек индуктивности могут иметь четыре вида неисправностей.

Обрыв

Обмотка трансформатора или дросселя может быть оборвана. Это означает, что ее выводы не имеют гальванического контакта друг с другом. Выяснить это можно с помощью тестера. При измерениях не касайтесь пальцами сразу обоих выводов.

Сопротивление Вашего тела может внести искажения в результаты измерения. Конечно для катушек с относительно малым числом витков и довольно толстым проводом обмотки, спутать проводимость человеческого тела с проводимостью обмотки затруднительно.

Но я встречал катушки с омическим сопротивлением в десятки килоом.

Вашему вниманию подборка материалов:Практика проектирования электронных схем Искусство разработки устройств. Элементная база. Типовые схемы. Примеры готовых устройств. Подробные описания. Онлайн расчет. Возможность задать вопрос авторам

Замыкание обмоток

Если трансформатор или дроссель имеют несколько обмоток, то электрическая изоляция между ними может нарушиться. Выявить замыкание обмоток можно, проверив сопротивление между выводами разных обмоток. Оно должно быть равно бесконечности. Опять же не примите за замыкание обмоток проводимость своего тела.

Короткозамкнутые витки

Внутри одной обмотки вследствие нарушения изоляции провода может возникнуть замыкание между витками. Возникнут, так называемые, короткозамкнутые витки. Такую катушку эксплуатировать нельзя, так как эти витки экранируют магнитное поле. Выявить эту неисправность можно только специальным прибором, устройство которого я опишу в одной из следующих статей. Подпишитесь на рассылку новостей.

Нарушения магнитопровода

В в катушках индуктивности и трансформаторах применяются сердечники из различных ферромагнитных материалов. Это может быть трансформаторное железо и ферриты. Феррит — довольно колкий материал. При ударах в нем могут возникать сколы и трещины.

Трещины изменяют магнитную проницаемость феррита и, соответственно, параметры катушек индуктивности. В сердечниках иногда делаются зазоры. Механические нагрузки могут повлиять на величину зазора и на параметры катушки.

Проверить соответствие индуктивности обмотки номинальной можно с помощью прибора для измерения индуктивности.

Проверка электромагнитных реле

Электромагнитные реле состоят из электромагнита (катушки индуктивности) и контактов. Про катушки индуктивности мы уже поговорили. Добавлю только, что реле постоянного тока не чувствительны к короткозамкнутым виткам, а реле переменного тока чувствительны.

Для проверки контактов необходимо тестером проверить наличие проводимости между нормально замкнутыми выводами и отсутствие проводимости между нормально разомкнутыми. Далее на реле надо подать напряжение, соответствующее параметрам реле, и проверить наличие проводимости между нормально разомкнутыми выводами и отсутствие проводимости между нормально замкнутыми.

Я встречался с такой экзотической неисправностью реле, когда контакты просто приварились друг к другу. Нормально разомкнутые контакты перестали размыкаться при отсутствии напряжения на обмотке.

(читать дальше) :: (в начало статьи)

Оглавление :: ПоискТехника безопасности :: Помощь

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости, чтобы быть в курсе.

Источник: https://gyrator.ru/check-throttle

Измерение параметров катушек индуктивности

как проверить катушку индуктивности

Основным параметром, характеризующим контурные катушки, дроссели, обмотки трансформаторов является индуктивность L.

В высокочастотных цепях применяются катушки с индуктивностью от сотых долей микрогенри до десятков миллигенри; катушки, используемые в низкочастотных цепях, имеют индуктивность до сотен и тысяч генри.

Измерение индуктивности высокочастотных катушек, входящих в состав колебательных систем, желательно производить с погрешностью не более 5%; в большинстве других случаев допустима погрешность измерения до 10-20%.

Рис. 1. Эквивалентные схемы катушки индуктивности.

Каждая катушка, помимо индуктивности L, характеризуется также собственной (межвитковой) ёмкостью CL и активным сопротивлением потерь RL, распределёнными по её длине. Условно считают, что L, CL и RL сосредоточены и образуют замкнутую колебательную цепь (рис. 1, а) с собственной резонансной частотой

fL = 1/(LCL)0,5

Вследствие влияния ёмкости CL при измерении на высокой частоте f определяется не истинная индуктивность L, а действующее, или динамическое, значение индуктивности

Lд = L/(1-(2*π*f)2*LCL) = L/(1-f2/ fL2)

которое может заметно отличаться от индуктивности L, измеренной на низких частотах.

С повышением частоты возрастают потери в катушках индуктивности, обусловленные поверхностным эффектом, излучением энергии, токами смещения в изоляции обмотки и каркасе, вихревыми токами в сердечнике. Поэтому действующее активное сопротивление Rд катушки может заметно превышать её сопротивление RL, измеренное омметром или мостом постоянного тока. От частоты f зависит и добротность катушки:

QL = 2*π*f*Lд/Rд.

На рис. 1, б, представлена эквивалентная схема катушки индуктивности с учётом её действующих параметров. Так как значения всех параметров зависят от частоты, то испытание катушек, особенно высокочастотных, желательно проводить при частоте колебаний источника питания, соответствующей их рабочему режиму. При определении результатов испытания индекс «д» обычно опускают.

Для измерения параметров катушек индуктивности применяются в основном методы вольтметра — амперметра, мостовой и резонансный. Перед измерениями катушка индуктивности должна быть проверена на отсутствие в ней обрыва и короткозамкнутых витков. Обрыв легко обнаруживается с помощью любого омметра или пробника, тогда как выявление коротких замыканий требует проведения специального испытания.

Для простейших испытаний катушек индуктивности иногда используют электронно-лучевые осциллографы.

Индикация короткозамкнутых витков

Проверка на отсутствие короткого замыкания чаще всего производится помещением испытуемой катушки вблизи другой катушки, входящей в состав колебательного контура автогенератора, наличие колебаний в котором и их уровень контролируются с помощью телефонов, стрелочного, электронно-светового или иного индикатора. Катушка с короткозамкнутыми витками будет вносить в связанную с нею цепь активные потери и реактивное сопротивление, уменьшающие добротность и действующую индуктивность цепи; в результате произойдёт ослабление колебаний автогенератора или даже их срыв.

Рис. 2. Схема резонансного измерителя ёмкостей, использующего явление поглощения.

Чувствительным прибором подобного типа может служить, например, генератор, выполненный по схеме на рис. 2. Катушка с короткозамкнутыми витками, поднесённая к контурной катушке L1, будет вызывать заметное возрастание показаний микроамперметра μA.

Испытательная цепь может представлять собой настроенный на частоту источника питания последовательный контур (см.

«Радио», 72-5-54); напряжение на элементах этого контура, контролируемое каким-либо индикатором, под влиянием короткозамкнутых витков проверяемой катушки будет уменьшаться вследствие расстройки и возрастания потерь.

Возможно также использование уравновешенного моста переменного тока, одним из плеч которого в этом случае должна являться катушка связи (вместо катушки Lx); короткозамкнутые витки испытуемых катушек будут вызывать нарушение равновесия моста.

Чувствительность испытательного прибора зависит от степени связи между катушкой измерительной цепи и проверяемой катушкой, с целью её повышения желательно обе катушки насаживать на общий сердечник, который в этом случае выполняется разомкнутым.

При отсутствии специальных приборов для проверки высокочастотных катушек можно использовать радиоприёмник. Последний настраивают на какую-либо хорошо слышимую станцию, после чего вблизи одной из его действующих контурных катушек, например магнитной антенны (желательно на одной оси с нею), помещают проверяемую катушку.

При наличии короткозамкнутых витков громкость заметно уменьшится. Уменьшение громкости может иметь место и в том случае, если частота настройки приёмника окажется близкой к собственной частоте испытуемой катушки.

Поэтому во избежание ошибки испытание следует повторить при настройке приёмника на другую станцию, достаточно удалённую от первой по частоте.

Измерение индуктивностей методом вольтметра — амперметра

Метод вольтметра — амперметра применяется для измерения сравнительно больших индуктивностей при питании измерительной схемы от источника низкой частоты F = 501000 Гц.

Схема измерений представлена на рис. 3, а. Полное сопротивление Z катушки индуктивности рассчитывается по формуле

Z = (R2+X2)0,5 = U/I

на основе показаний приборов переменного тока V~ и mA~. Верхний (по схеме) вывод вольтметра присоединяют к точке а при Z  Za, где Zв и Za — полные входные сопротивления соответственно вольтметра V~ и миллиамперметра mA~. Если потери малы, т. е. R

Источник: http://zpostbox.ru/izmerenie_parametrov_katushek_induktivnosti.html

Расчет индуктивности катушек (однослойных)

Как произвести расчет катушек индуктивности (однослойных, цилиндрических без сердечника)

Индуктивность катушки зависит от ее геометрических размеров, числа витков и способа намотки катушки. Чем больше диаметр, длина намотки и число витков катушки, тем больше ее индуктивность. То что делает катушка индуктивности в колебательных контурах является очень важным и от правильного расчета зависит добротность контура.

Если катушка индуктивности наматывается плотно виток к витку, то индуктивность ее будет больше по сравнению с катушкой, намотанной неплотно, с промежутками между витками. Когда требуется намотать катушку по заданным размерам и нет провода нужного диаметра, то при намотке ее более толстым проводом надо несколько увеличить, а тонким —    уменьшить число витков катушки, чтобы получить необходимую индуктивность.

Ресчет катушек индуктивности (однослойных, цилиндрических)

Рис. 1. Пример однослойной катушки индуктивности.

Все приведенные выше соображения справедливы при намотке катушек без ферритовых сердечников. Расчет однослойных цилиндрических катушек производится по формуле:

где:

  • L — индуктивность катушки, мкГн;
  • D — диаметр катушки, см;
  • I — длина намотки катушки, см;
  • n — число витков катушки.

При расчете катушки могут встретиться два случая:

  • а) по заданным геометрическим размерам необходимо определить индуктивность катушки;
  • б) при известной индуктивности определить число витков и диаметр провода катушки.

В первом случае все исходные данные, входящие в формулу, известны, и расчет не представляет затруднений.

Пример. Определим индуктивность катушки, изображенной на рис. 1; для этого подставим в формулу все необходимые величины:

Во втором случае известны диаметр катушки и длина намотки, которая, в свою очередь, зависит от числа витков и диаметра провода.

Поэтому расчет рекомендуется вести в следующей последовательности. Исходя из конструктивных соображений определяют размеры катушки, диаметр и длину намотки, а затем рассчитывают число витков по формуле:

После того как будет найдено число витков, определяют диаметр провода с изоляцией по формуле:

ЭТО ИНТЕРЕСНО:  Что такое ов в строительстве

где:

  • d — диаметр провода, мм,
  • l — длина обмотки, мм,
  • n — число витков.

Пример. Нужно изготовить катушку диаметром 1 см при длине намотки 2 см, имеющую индуктивность 0,8 мкГн. Намотка рядовая виток к витку.

Подставив в последнюю формулу заданные величины, получим:

Диаметр провода:

Если эту катушку наматывать проводом меньшего диаметра, то нужио полученные расчетным путем 14 витков разместить по всей длине катушки (20 мм) с равными промежутками между витками, т. е. с шагом намотки.

Индуктивность данной катушки будет на 1—2% меньше номинальной, что следует учитывать при изготовлении таких катушек. При намотке в случае необходимости более толстым проводом, чем 1,43 мм, следует сделать новый расчет, увеличив диаметр или длину намотки катушки.

Возможно, также придется увеличить и то и другое одновременно, пока не будут получепы необходимые габариты катушки, соответствующие заданной индуктивности.

Следует заметить, что по приведенным пыше формулам рекомендуется рассчитывать такие катушки, у которых длина намотки l равна или больше половины диаметра. Если же длина намотки меньше D половины диаметра то более точные результаты можно получить по формулам:

Как произвести пересчет катушек индуктивности (однослойных, цилиндрических)

Необходимость в пересчете катушек индуктивности возникает при отсутствии нужного диаметра провода, указанного в описании конструкции, и замене его проводом другого диаметра; при изменении диаметра каркаса катушки.

Если отсутствует провод нужного диаметра, что является наиболее частой причиной пересчета катушек, можно воспользоваться проводом другого диаметра.

Изменение диаметра провода в пределах до 25% в ту или другую сторону вполне допустимо и в большинстве конструкций не отражается на качестве их работы. Более того, увеличение диаметра провода допустимо во всех случаях, так как оно уменьшает омическое сопротивление катушки и повышает ее добротность.

Уменьшение же диаметра ухудшает добротность и увеличивает плотность тока на единицу сечения провода, которая не может быть больше определенной допустимой величины.

Пересчет числа витков однослойной цилиндрической катушки при замене провода одного диаметра другим производится по формуле:

где:

  • n — повое число витков катушки;
  • n1 — число витков катушки, указанное в описании;
  • d— диаметр имеющеюся провода;
  • d1 — диаметр провода, указанный в описании.

В качестве примера произведем пересчет числа витков катушки, изображенной на рис. 1, для провода диаметром 0,8 мм:

(длина намотки l= 18 X 0,8 = 14,4 мм, или 1,44 см).

Таким образом, число витков и длина намотки несколько уменьшились. Для проверки правильности пересчета рекомендуется выполнить новый расчет катушки с измененным диаметром провода:

При пересчете катушки, связанном с изменением ее диаметра, следует пользоваться процентной зависимостью между диаметром и числом витков катушки.

Эта зависимость заключается в следующем: при увеличении диаметра катушки на определенное число процентов количество витков ее уменьшается на столько же процентов, и, наоборот, при уменьшении диаметра увеличивается число витков на равное число процентов. Для упрощения расчетов за диаметр катушки можно принимать диаметр каркаса.

Рис. 2. Катушки индуктивности. Пример.

Так, для примера произведем пересчет числа витков катушки (рис. 2, а), имеющей диаметр 1,5 см, на диаметр, равный 1,8 см (рис. 2, б). Согласно условиям пересчета диаметр каркаса увеличивается на 3 мм, или на 20%.

Следовательно, для сохранения неизменной величины индуктивности этой катушки при намотке ее на каркасе большего диаметра нужно уменьшить число витков на 20%, или на 8 витков. Таким образом, новая катушка будет иметь 32 витка.

Проверим пересчет н установим погрешность, допущенную в результате пересчета. Катушка (см. рис. 2, а) имеет индуктивность:

Новая катушка на каркасе с увеличенным диаметром:

Ошибка при пересчете составляет 0,25 мкГн, что вполне допустимо для расчетов в радиолюбительской практике.

Источник: http://radiostorage.net/1609-raschet-induktivnosti-katushek-odnoslojnyh.html

Как проверить обмотку электро оборудования

Многим домашним мастерам и профессионалам приходится регулярно проверять исправность обмоток различных электрических машин, электроинструмента, трансформаторов и других электрических устройств. Делать это удобно специальным пробником, устройство которого описано ниже.

Пробник для проверки обмоток катушек индуктивности электродвигателя, генератора, трансформатора, насоса, вентилятора, бытовых кухонных машин и электрического инструмента

С помощью этого пробника можно проверять обмотки трансформаторов, дросселей, электродвигателей, реле, магнитных пускателей, контакторов и других катушек с индуктивностью от 200 мкГн до 2 Гн.

Пробником удается определить не только целостность цепи обмотки, но и наличие в ней межвиткового замыкания.

Кроме того, пробник может быть использован для проверки проводимости полупроводников и исправности переходов кремниевых диодов и транзисторов, а также для освещения темных мест во время ремонта электрооборудования.

В отличие от аналогичного по назначению пробника, описанного в [1], предлагаемый проще в эксплуатации, поскольку не содержит переключателя пределов измерения, а также позволяет однозначно определить вид неисправности — обрыв цепи или межвитковое замыкание обмотки.

Рис. 1. Электрическая принципиальная схема пробника для проверки катушек индуктивности. Из зарубежных, вместо КТ315Б, подойдут — BFP20, 2N2712, BFP721, BFP722, 2SC641.  Вместо КТ361Б — ВС250В, BCW58, ВС157, 2N3905, ВС557, 2SA566.

Основа прибора (рис. 1) — измерительный генератор на транзисторах VT1, VT2.

Его рабочая частота определяется параметрами колебательного контура, образованного конденсатором С1 и проверяемой катушкой индуктивности, к выводам которой подключают щупы ХР1 и ХР2. Генератор работоспособен в широком диапазоне изменения отношения индуктивности и емкости колебательного контура [2].

Переменным резистором R1 устанавливают необходимую глубину положительной обратной связи, обеспечивающей надежную работу генератора.

Транзистор VT3, работающий в диодном режиме, создает необходимый сдвиг уровня напряжения между эмиттером транзистора VT2 и базой VT4. Эксперименты с различными кремниевыми диодами, которые можно было бы использовать на месте транзистора VT3, показали, что они не обеспечивают нужного результата.

На транзисторах VT4, VT5 собран генератор импульсов, который совместно с усилителем мощности на транзисторе VT6 обеспечивает работу индикаторной лампы HL1 в одном из трех режимов: отсутствие свечения, мигания и непрерывного горения. Режим работы генератора импульсов определяется напряжением смещения на базе транзистора VT4.

Работает пробник так. При замкнутых щупах ХР1 и ХР2 измерительный генератор не возбуждается, транзистор VT2 открыт. Постоянного напряжения на его эмиттере, а значит, на базе транзистора VT4 недостаточно для запуска генератора импульсов. Транзисторы VT5, VT6 при этом открыты и лампа горит непрерывно, сигнализируя о целостности проверяемой цепи.

При подключении к щупам пробника исправной катушки индуктивности, скажем, обмотки трансформатора, и установке движка переменного резистора R1 в определенное положение, измерительный генератор возбуждается. Напряжение на эмиттере транзистора VT2 увеличивается, что приводит к увеличению напряжения смещения на базе транзистора VT4 и запуску генератора импульсов. Лампа начинает мигать.

Если в проверяемой обмотке есть короткозамкнутые витки, измерительный генератор не возбуждается и пробник работает, как при замкнутых щупах. Если на одном магнитопроводе расположено несколько обмоток, то прибор среагирует и на межвитковое замыкание в соседних обмотках.

При разомкнутых щупах или обрыве цепи проверяемой катушки транзистор VT2 закрыт. Напряжение на его эмиттере, а значит, и на базе транзистора VT4 резко возрастает. Этот транзистор открывается до насыщения, и колебания генератора импульсов срываются. Транзисторы VT5, VT6 закрываются, лампа HL1 не светится.

Если подключить к щупам прибора р-n переход кремниевого транзистора или диода в прямой полярности (анод диода — к щупу ХР1, катод — к щупу ХР2), лампа будет мигать. При пробитом переходе лампа горит непрерывно, а при обрыве цепи — не светится.

Детали и монтаж пробника

Кроме указанных на схеме, транзисторы VT1—VT3 могут быть КТ315Г, КТ358В, КТ312В. Транзисторы КТ361Б можно заменить на любые из серий КТ502, КТ361. Транзистор VT6 целесообразно использовать серий КТ315, КТ503 с любым буквенным индексом.

Переменный резистор R1 желательно применить с функциональной зависимостью В или Б (логарифмическая). Наиболее пологий участок характеристики должен проявляться при правом по схеме положении движка.

Постоянные резисторы — МЛТ- 0,125; конденсатор С1 — КМ; С2 и СЗ — К50-6; лампа — на напряжение 2,5 В и ток 0,068 А; источник питания — два последовательно соединенных гальванических элемента 332.

В качестве светового индикатора в пробнике можно применить светодиод АЛ310А, АЛ307А, АЛ307Б, включив его вместо лампы с последовательно соединенным резистором сопротивлением 68 Ом. Недостатком использования светодиода можно считать малую его яркость, иногда недостаточную в условиях сильной освещенности. Да и использовать пробник со светодиодом для освещения монтажа не удастся.

Рис. 2. Печатная плата пробника для проверки катушек индуктивности

Большинство деталей пробника смонтировано на печатной плате (рис. 2) из фольгированного стеклотекстолита толщиной 1,5 мм. Контакт, в который ввинчивается резьбовая часть лампы, выполнен из белой жести в виде прямоугольника размерами 15 х 20 мм.

К печатной плате этот контакт крепится с помощью двух шпилек из медного провода, впаянных в плату. Если пробник будет использоваться и для освещения монтажа (при замыкании щупов), то к пластине контакта целесообразно припаять светоотражатель из белой жести в форме образующей конуса (показано штриховой линией).

Второй, пружинящий контакт для лампы изготовлен из отрезка пружины электромагнитного реле. Его также крепят к шпилькам, впаянным в плату.

Настройка пробника

При использовании указанных на схеме деталей налаживание пробника сведется к градуировке шкалы переменного резистора.

Для этого, подключая к щупам пробника исправные катушки с различной индуктивностью, изменением положения движка резистора добиваются мигания индикаторной лампы.

Затем движок устанавливают в положение, близкое к левому по схеме выводу, при котором еще сохраняется мигание, и делают на шкале отметку значения индуктивности или наносят какое-то условное обозначение (скажем, тип дросселя, трансформатора и т. д.).

Может случиться, что в крайнем правом положении движка резистора и при разомкнутых щупах пробника лампа будет светиться. Тогда придется подобрать резистор R3 (увеличить его сопротивление), чтобы лампа погасла.

При проверке катушек малой индуктивности острота «настройки» переменного резистора может оказаться чрезмерной. Выйти из положения нетрудно включением последовательно с резистором R1 еще одного переменного резистора с малым сопротивлением, либо использованием вместо переменного резистора магазина сопротивлений или набора резисторов, подключаемых малогабаритным многопозиционным переключателем.

Следует заметить, что в случае проверки обмоток трансформаторов с большим коэффициентом трансформации, пробник следует подключать к обмотке с наибольшим числом витков. Потому что, проверяя обмотку с меньшим числом витков, труднее обнаружить короткое замыкание в более высокоомной обмотке.

И. ПАЗДНИКОВ

г. Березники Пермской обл.

ЛИТЕРАТУРА

1. Кривонос А. Определение короткозамкнутых витков в обмотках трансформаторов и дросселей.— Радио, 1968, № 4, с. 56.

2. Универсальный LC-генератор.— Радио, 1979, № 5, с. 58.

Источник: https://domekonom.su/kak-proverit-obmotku-elektro-oborudovaniya.html

Как проверить дроссель с помощью мультиметра

Одним из компонентов схем различных электронных и электротехнических приборов является дроссель. Дросселем называют катушку индуктивности, которая при работе в электрических схемах ограничивает проводимость для переменного тока и беспрепятственно пропускает ток постоянный. Это свойство дросселя используется для сглаживания переменной составляющей токов. Проверка дросселя осуществляется мультиметром или специальным тестером.

Назначение и устройство

В некоторых приборах дроссели устанавливаются для того, что бы пропускать импульсные токи определенного диапазона частот. Диапазон этот зависит от конструктивного решения дросселя, то есть от применяемого в катушке провода, его сечения, количества витков, наличия сердечника и материала, из которого он изготовлен.

Конструктивно дроссель представляет собой намотанный на сердечник изолированный провод. Сердечник может быть металлическим, набранным из изолированных пластин или ферритовым. Иногда дроссель может выполняться без сердечника. В этом случае используется керамический или пластмассовый каркас для провода.

Дроссельная заслонка присутствует в карбюраторе. Она регулирует подачу горючей смеси, представляя собой потенциометр. Чтобы проверить датчик дроссельной заслонки в автомобиле, определяют соответствие входного напряжения устройства положению заслонки.

В мультиметре выставляют режим прозвонки. Контакты разъема датчика соединяют со щупами мультиметра и создают видимость движения заслонки (пальцами). При этом проверяют, как реагирует датчик в крайних положениях заслонки. Должен идти чистый сигнал без хрипов.

В светильниках

В светильниках, предусмотренных для использования ламп дневного света, помимо самих ламп, применяются такие компоненты, как стартер и дроссель.

Стартер, как следует из названия, запускает процесс свечения в лампе, и далее в процессе не участвует. Дроссель выполняет функции стабилизатора тока и напряжения в течение всего периода свечения лампы.

Если дроссель неисправен, лампа не горит, или горит не устойчиво, свечение ее неоднородно по всей длине, внутри могут появляться области с более ярким свечением, движущиеся от одного электрода лампы к другому. Иногда можно заметить эффект мерцания света.

Лампа при неисправном дросселе может не загореться с первого раза, и стартер будет многократно включаться, пока, наконец, процесс свечения не запустится. В результате, в местах установки спиралей, на колбе лампы появятся потемнения. Это связано с тем, что спирали работают более продолжительное время, чем установлено для нормального запуска.

Проверка в лампах

Проверку дросселя необходимо произвести, если наблюдается одно из вышеописанных явлений при работе лампы дневного света, а также, если замечено появление характерного запаха подгорающей изоляции, появление звуков, нехарактерных для работы прибора, а также в том случае, если лампа не включается.

До того, как проверить дроссель лампы, проверяются сама лампа и стартер.

Неисправность дросселя может заключаться в обрыве или перегорании провода катушки или межвитковом замыкании, вызванном пробоем или подгоранием изоляции.

Обе неисправности могут произойти либо вследствие длительного времени использования прибора, либо в результате какого-либо механического воздействия. Возможно перегорание провода катушки в результате подачи на нее тока большего, чем максимальный, на который рассчитан дроссель.

В случае обрыва или перегорания провода, можно выявить неисправность обычным тестером или мультиметром. В силу того, что дроссель пропускает постоянный ток, замкнув цепь тестера через катушку, по свечению контрольной лампы или его отсутствию можно понять, есть обрыв или нет.

Если при измерении мультиметром, сопротивление бесконечно, имеет место обрыв провода катушки.

Проверка межвиткового замыкания

В случае межвиткового замыкания, проверка тестером результата не даст. В этом случае необходимо знать, как проверять дроссель при помощи мультиметра.

Межвитковое замыкание имеет место при непосредственном гальваническом контакте двух витков или при контакте витков с металлическим сердечником. Очевидно, что в этом случае сопротивление катушки уменьшается.

Возможен редкий случай, когда измерение сопротивления катушки не даст достоверной картины ее состояния. Такое может случиться при обрыве и межвитковом замыкании одновременно.

В этом случае межвитковое замыкание может оказаться параллельным обрыву, и несколько витков просто не будут участвовать в измерении. Исправный, казалось бы, дроссель будет работать некорректно.

Для проверки катушки на наличие межвиткового замыкания, аналоговый мультиметр в режиме миллиамперметра необходимо использовать в составе прибора, собранного на двух транзисторах.

ЭТО ИНТЕРЕСНО:  Dc напряжение что означает

Схема прибора приведена на рисунке.

Сам прибор представляет собой генератор низкой частоты. При сборке схемы используются любые транзисторы из линейки МП39-МП42 (коэффициент усиления 40-50).

Диоды можно использовать типа Д1 или Д2 с любым индексом. Резисторы применяются любого типа, рассчитанные на мощность не менее 0,12 Вт. Питание прибора осуществляется от источника постоянного тока, напряжением 7-9 В.

Последовательность действия

Порядок проверки следующий:

  1. включается тумблер Вк. При этом стрелка мультиметра должна отклониться до середины шкалы;
  2. в зависимости от индуктивности катушки, устанавливается положение движка переменного резистора R5. Левое положение соответствует меньшей, а правое – большей индуктивности. При проверке катушек с индуктивностью менее 15 мГн, необходимо дополнительно нажать кнопку Кн2;
  3. к клеммам Lx подключаются выводы дросселя и замыкается кнопкой контакт Кн1. При этом, если в обмотке нет витков, короткозамкнутых между собой, стрелка мультиметра должна отклониться в сторону больших значений или же незначительно отклониться в сторону меньших. Если в обмотке есть хоть одно замыкание между витками, стрелка возвращается на нуль.

Иногда причиной неисправности катушки может стать разрушившийся или поврежденный сердечник. Материал, из которого выполнен сердечник, его размер и положение относительно катушки, влияют на индуктивность.

Проверка индуктивности

Наличие в арсенале мультиметра такой полезной функции, как измерение индуктивности катушек, будет полезным для проверки соответствия дросселя характеристикам, заявленным в справочной литературе. Функция присутствует только в некоторых моделях цифровых мультиметров.

Чтобы воспользоваться этой функцией, необходимо настроить мультиметр на измерение индуктивности. Контакты щупов присоединяются к выводам катушки. При первом измерении мультиметр устанавливается в наибольший диапазон измерений, и потом диапазон уменьшается для получения измерения достаточной точности.

При проведении всех измерений важно не допускать касания руками контактов, на которых измеряются те или иные параметры, иначе проводимость человеческого тела может изменить показания прибора.

Источник: https://evosnab.ru/instrument/test/kak-proverit-drossel-multimetrom

Как проверить электронный дроссель

Обмотки катушек индуктивности могут иметь четыре вида неисправностей.

Катушка индуктивности

Что вы себе представляете под словом “катушка” ? Ну это, наверное, какая-нибудь “фиговинка”, на которой намотаны нитки, леска, веревка, да что угодно! Катушка индуктивности представляет из себя точь-в-точь то же самое, но вместо нитки, лески или чего-нибудь еще там намотана обыкновенная медная проволока в изоляции.

Изоляция может быть из бесцветного лака, из ПВХ-изоляции и даже из матерчатой. Тут фишка такая, что хоть и провода в катушке индуктивности очень плотно прилегают к друг другу, они все равно изолированы друг от друга. Если будете мотать катушки индуктивности своими руками, ни в коем случае не вздумайте брать обычный медный голый провод!

Индуктивность

Любая катушка индуктивности обладает индуктивностью. Индуктивность катушки измеряется в Генри (Гн), обозначается буковкой L и замеряется с помощью LC – метра.

Что такое индуктивность?  Если через  провод пропустить электрический ток, то он вокруг себя создаст магнитное поле:

где

В – магнитное поле, Вб

I – сила тока, А

А давайте возьмем и намотаем в спиральку этот провод и подадим на его концы напряжение

И у нас получится вот такая картина с магнитными силовыми линиями:

Грубо говоря, чем больше линий магнитного поля пересекут площадь этого соленоида, в нашем случае площадь цилиндра, тем больше будет магнитный поток (Ф). Так как через катушку течет электрический ток, значит, через нее проходит ток с  Силой тока (I), а коэффициент между магнитным потоком и силой тока называется индуктивностью и вычисляется по формуле:

С научной же точки зрения, индуктивность – это способность извлекать энергию из источника электрического тока и сохранять ее в виде магнитного поля. Если ток в катушке увеличивается, магнитное поле вокруг катушки расширяется, а если ток уменьшается , то магнитное поле сжимается.

Самоиндукция

Катушка индуктивности обладает также очень интересным свойством. При подаче на катушку постоянного напряжения, в катушке возникает на короткий промежуток времени противоположное напряжение.

Это противоположное напряжение называется ЭДС самоиндукции. Эта ЭДС зависит от значения индуктивности катушки. Поэтому, в момент подачи напряжения на катушку сила тока в течение долей секунд плавно меняет свое значение от 0 до некоторого значения, потому что напряжение, в момент подачи электрического тока, также меняет свое значение от ноля и до установившегося значения. Согласно Закону Ома:

где

I – сила тока в катушке , А 

U – напряжение в катушке, В 

 R – сопротивление катушки, Ом

Как мы видим по формуле, напряжение меняется от нуля и до напряжения, подаваемого в катушку, следовательно и ток тоже будет меняться от нуля и до какого то значения. Сопротивление катушки для постоянного тока также постоянное.

И второй феномен в катушке индуктивности заключается в том, что если мы разомкнем цепь катушка индуктивности – источник тока, то у нас ЭДС самоиндукции будет суммироваться к напряжению, которое мы уже подали на катушку.

То есть как только мы разрываем цепь, на катушке напряжение в этот момент может быть  в разы больше, чем было до размыкания  цепи, а сила тока в цепи катушки будет тихонько падать, так как ЭДС самоиндукции будет поддерживать убывающее напряжение.

Сделаем первые выводы о работе катушки индуктивности при подаче на нее постоянного тока. При подаче на катушку электрического тока, сила тока будет плавно увеличиваться, а при снятии электрического тока с катушки, сила тока будет плавно убывать до нуля. Короче говоря, сила тока в катушке мгновенно измениться не может.

Типы катушек индуктивности

Катушки индуктивности делятся в основном на два класса: с магнитным и  немагнитным сердечником. Снизу  на фото катушка с немагнитным сердечником.

Но где у нее сердечник? Воздух – это немагнитный сердечник :-).  Такие катушки также могут быть намотаны на какой-нибудь цилиндрической бумажной трубочке. Индуктивность катушек с немагнитным  сердечником используется, когда индуктивность не превышает 5 миллигенри.

А вот катушки индуктивности с сердечником:

В основном используют сердечники из феррита и железных пластин. Сердечники повышают индуктивность катушек в разы. Сердечники в виде кольца (тороидальные) позволяют получить большую индуктивность, нежели просто сердечники из цилиндра.

Для катушек средней индуктивности используются ферритовые сердечники:

Катушки с большой индуктивностью делают как трансформатор с железным сердечником, но с одной обмоткой, в отличие от трансформатора.

Дроссель

Также есть особый вид катушек индуктивностей. Это так называемые дроссели. Дроссель – это катушка индуктивности, задача которой состоит в том, чтобы создать в цепи большое сопротивление для переменного тока, чтобы подавить токи высоких частот.

Постоянный ток через дроссель проходит без проблем. Почему это происходит, можете прочитать в этой статье. Обычно дроссели включаются в цепях питания усилительных устройств. Дроссели предназначены для защиты источников питания от попадания в них высокочастотных сигналов (ВЧ-сигналов). На низких частотах (НЧ) они используются в фильтрах цепей питания и обычно имеют металлические или ферритовые сердечники. Ниже на фото силовые дроссели:

Также существует еще один особый вид дросселей – это сдвоенный дроссель. Он представляет из себя две встречно намотанных катушки индуктивности. За счет встречной намотки и взаимной индукции он более эффективен. Сдвоенные дроссели получили широкое распространение в качестве входных фильтров блоков питания, а также в звуковой технике.

Что влияет на индуктивность?

От каких факторов зависит индуктивность катушки? Давайте проведем несколько опытов.  Я намотал катушку с немагнитным сердечником. Ее индуктивность настолько мала, что LC – метр мне показывает ноль.

Имеется ферритовый сердечник

Начинаю вводить катушку в сердечник на самый край

LC-метр  показывает 21 микрогенри.

Ввожу катушку на середину феррита

35 микрогенри. Уже лучше.

Продолжаю вводить катушку на правый край феррита

20 микрогенри. Делаем вывод, самая большая индуктивность на цилиндрическом феррите возникает в его середине.  Поэтому, если будете мотать на цилиндрике, старайтесь мотать в середине феррита. Это свойство используется для плавного изменения индуктивности  в переменных катушках индуктивности:

где

1 – это каркас катушки

2 – это витки катушки

3 – сердечник, у которого сверху пазик под маленькую отвертку. Вкручивая или выкручивая сердечник, мы тем самым изменяем индуктивность катушки.

Экспериментируем дальше. Давайте попробуем сжимать и разжимать витки катушки. Для начала ставим ее в середину и начинаем сжимать витки

Индуктивность стала почти 50 микрогенри!

А давайте-ка попробуем расправим витки по всему ферриту

13 микрогенри. Делаем вывод: для максимальной индуктивности мотать катушку надо “виток к витку”.

Убавим витки катушки в два раза. Было 24 витка, стало 12.

Совсем маленькая индуктивность. Убавил количество витков в 2 раза, индуктивность уменьшилась в 10 раз.  Вывод: чем меньше количество витков – тем меньше индуктивность и наоборот. Индуктивность меняется не прямолинейно виткам.

Давайте поэкспериментируем с ферритовым кольцом.

Замеряем индуктивность

15 микрогенри

Отдалим витки катушки друг от друга

Замеряем снова

Хм, также 15 микрогенри. Делаем вывод: расстояние от витка до витка  не играет никакой роли в катушке индуктивности тороидального исполнения.

Мотнем побольше витков. Было 3 витка, стало 9.

Замеряем

Офигеть! Увеличил количество витков  в 3 раза, а индуктивность увеличилась в 12 раз! Вывод: индуктивность меняется не прямолинейно виткам.

Если верить формулам для расчета индуктивностей, индуктивность зависит от “витков в квадрате”. Эти формулы я здесь выкладывать не буду, потому как не вижу надобности. Скажу только, что индуктивность зависит еще от таких параметров, как сердечник (из какого материала он сделан), площадь поперечного сечения сердечника, длина катушки.

Последовательное и параллельное соединение катушек индуктивности

При последовательном соединении индуктивностей, их общая индуктивность будет равняться сумме индуктивностей.

А при параллельном соединении получаем вот так:

При соединении индуктивностей должно выполняться правило, чтобы они были пространственно разнесены на плате. Это связано с тем, что при близком расположении друг друга их магнитные поля будут влиять с друг другом, и поэтому показания индуктивностей будут неверны. Не ставьте на одну железную ось две и более тороидальных катушек.  Это может привести к неправильным показаниям общей индуктивности.

Резюме

Катушка индуктивности играет в электронике очень большую роль, особенно в приемопередающей аппаратуре. На катушках индуктивности строятся также различные фильтры для электронной радиоаппаратуры, а в электротехнике ее используют также в качестве ограничителя скачка силы тока.

Ребята из Паяльника забабахали очень неплохой видос про катушку индуктивности. Советую посмотреть в обязательном порядке:

Источник: https://www.ruselectronic.com/katushka-induktivnosti/

Прибор для проверки катушек индуктивности

Основным параметром, характеризующим контурные катушки, дроссели, обмотки трансформаторов является индуктивность L.

В высокочастотных цепях применяются катушки с индуктивностью от сотых долей микрогенри до десятков миллигенри; катушки, используемые в низкочастотных цепях, имеют индуктивность до сотен и тысяч генри.

Измерение индуктивности высокочастотных катушек, входящих в состав колебательных систем, желательно производить с погрешностью не более 5%; в большинстве других случаев допустима погрешность измерения до 10-20%.

Рис. 1. Эквивалентные схемы катушки индуктивности.

Каждая катушка, помимо индуктивности L, характеризуется также собственной (межвитковой) ёмкостью CL и активным сопротивлением потерь RL, распределёнными по её длине. Условно считают, что L, CL и RL сосредоточены и образуют замкнутую колебательную цепь (рис. 1, а) с собственной резонансной частотой

fL = 1/(LCL)0,5

Вследствие влияния ёмкости CL при измерении на высокой частоте f определяется не истинная индуктивность L, а действующее, или динамическое, значение индуктивности

Lд = L/(1-(2*π*f)2*LCL) = L/(1-f2/ fL2)

которое может заметно отличаться от индуктивности L, измеренной на низких частотах.

С повышением частоты возрастают потери в катушках индуктивности, обусловленные поверхностным эффектом, излучением энергии, токами смещения в изоляции обмотки и каркасе, вихревыми токами в сердечнике. Поэтому действующее активное сопротивление Rд катушки может заметно превышать её сопротивление RL, измеренное омметром или мостом постоянного тока. От частоты f зависит и добротность катушки:

QL = 2*π*f*Lд/Rд.

На рис. 1, б, представлена эквивалентная схема катушки индуктивности с учётом её действующих параметров. Так как значения всех параметров зависят от частоты, то испытание катушек, особенно высокочастотных, желательно проводить при частоте колебаний источника питания, соответствующей их рабочему режиму. При определении результатов испытания индекс «д» обычно опускают.

Для измерения параметров катушек индуктивности применяются в основном методы вольтметра — амперметра, мостовой и резонансный. Перед измерениями катушка индуктивности должна быть проверена на отсутствие в ней обрыва и короткозамкнутых витков. Обрыв легко обнаруживается с помощью любого омметра или пробника, тогда как выявление коротких замыканий требует проведения специального испытания.

Для простейших испытаний катушек индуктивности иногда используют электронно-лучевые осциллографы.

Измерение индуктивностей методом вольтметра — амперметра

Метод вольтметра — амперметра применяется для измерения сравнительно больших индуктивностей при питании измерительной схемы от источника низкой частоты F = 501000 Гц.

Схема измерений представлена на рис. 3, а. Полное сопротивление Z катушки индуктивности рассчитывается по формуле

Z = (R2+X2)0,5 = U/I

на основе показаний приборов переменного тока V~ и mA~. Верхний (по схеме) вывод вольтметра присоединяют к точке а при Z  Za, где Zв и Za — полные входные сопротивления соответственно вольтметра V~ и миллиамперметра mA~. Если потери малы, т. е. R

Источник: https://1000eletric.com/pribor-dlya-proverki-katushek-induktivnosti/

Катушки индуктивности: расчет по формулам

Для того, чтобы создать магнитное поле и сгладить в нем помехи и импульсы, используются специальные накопительные элементы. Катушки индуктивности в цепи переменного тока и постоянного применяются для накопления определенного количества энергии и ограничения электричества.

Конструкция

Главное назначение катушек индуктивности ГОСТ 20718-75 – это накопление электрической энергии в пределах магнитного поля для акустики, трансформаторов и т. д. Их используют для разработки и конструирования различных селективных схем и электрических устройств.

От конструкции (материала, количества витков), наличия каркаса зависит их функциональность, размеры и область использования. Изготовление устройств производится на заводах, но можно сделать их самостоятельно.

Самодельные элементы несколько уступают по надежности профессиональным, но обходятся в разы дешевле.

Фото — схема

Каркас катушки индуктивности выполняется из диэлектрического материала. На него наматывается изолированный проводник, который может быть как одножильным, так и многожильным. В зависимости от типа намотки, они бывают:

  1. Спиральными (на ферритовом кольце);
  2. Винтовыми;
  3. Винтоспиральными или комбинированными.
ЭТО ИНТЕРЕСНО:  N c что это

Примечательной особенностью катушки индуктивности для электрических схем является то, что её можно намотать как в несколько слоев, так и нированно, т. е.

, с обрывками Если используется толстый проводник, то элемент может обматываться без каркаса, если тонкий – то только на рамку. Эти каркасы катушек индуктивности бывают различного сечения: квадратные, круглые, прямоугольные.

Полученная намотка может вставляться в специальный корпус какого-либо электрического устройства или использоваться в открытом виде.

Фото — конструкция самодельного элемента

Для увеличения индуктивности используются сердечники. В зависимости от назначения элемента, варьируется используемый материал стержня:

  1. С ферромагнитным и воздушным сердечником применяются при высоких частотах тока;
  2. Стальные используются в условиях низкого напряжения.

Вместе с этим, в электротехнике активно используются индуктивные классические катушки без сердечника, которые можно сделать своими руками при помощи намотки на немагнитный контур.Такие устройства имеют некоторые преимущества перед «сердечными». У них большая линейность импеданса. Но, у тороидальной модели намотка на немагнитный каркас способствует появлению паразитной емкости.

Исходя из принципа работы, бывают такие типы:

  1. Контурные. Преимущественно используются в радиотехнике для создания колебательных контуров платы, работают вместе с конденсаторами. Для соединения используется последовательное подключение. Это современный вариант плоской контурной катушки Тесла;
  2. Вариометры. Это высокочастотные перестраиваемые катушки, индуктивностью которыми можно при необходимости управлять при помощи дополнительных устройств. Они представляют собой соединение двух отдельных катушек, при этом, одна подвижна, а вторая нет;
  3. Сдвоенные и подстроечные дроссели. Основные характеристики этих катушек: малое сопротивление постоянному току и высокое переменному. Дроссели изготавливаются из нескольких катушек, соединенных обмотками между собой. Их часто используют в виде фильтра для различных радиотехнических приборов, устанавливают для контроля помех в антенны и т. д.;
  4. Трансформаторы связи. Их конструктивной особенностью является то, что на одном стержне установлено от двух и более катушек. Они используются в трансформаторах для обеспечения определенной связи между отдельными компонентами устройства.

Маркировка катушек индуктивности определяется по количеству витков и цвету корпуса.

Фото — маркировка

Принцип действия

Схема работы катушек индуктивности активного действия основан на том, что каждый отдельный виток намотки пересекается с магнитными силовыми линиями.

Этот электрический элемент необходим для того, чтобы извлекать электрическую энергию из источника питания и преобразовывая её сохранять в виде электрического поля. Соответственно, если ток цепи увеличивается – то расширяется и магнитное поле, но если он уменьшается – поле будет неизменно сжиматься.

Эти параметры также зависят от частоты и напряжения, но в целом, действие остается неизменным. Включение элемента производит сдвиг фаз тока и напряжения.

Фото — принцип работы

Помимо этого, индуктивные (каркасные и бескаркасные) катушки обладают свойством самоиндукции, его расчет производится исходя из данных номинальной сети.

В многослойной и однослойной обмотке создается напряжение, которое противоположно напряжению электрического тока. Это называется ЭДС, определение электродвижущей магнитной силы зависит от показателей индуктивности. Её можно рассчитать по закону Ома.

Стоит отметить, что независимо от напряжения сети, сопротивление в катушке индуктивности не изменяется.

Фото — соединение отдельных выводов элементов

Связь индуктивности и понятия (изменения) ЭДС можно найти по формуле εc = — dФ/dt = — L*dI/dt, где ε – это значение ЭДС самоиндукции. И если скорость изменения электрической энергии будет равна dI/dt = 1 A/c, то и L = εc.

расчет катушки индуктивности

Вычисление

Основные характеристики катушки индуктивности: добротность, индуктивность, потери, резонанс, паразитарная емкость и ЭДС. Также прибор зависит от ТИК – температурного коэффициента.

Для того чтобы рассчитать различные параметры, используются специальные физические формулы. К примеру, простейший колебательный контур состоит из катушки и конденсатора, он рассчитывается по следующей формуле:

Формула — формула колебательного контура

Где L – это сам элемент, накапливающая магнитную энергию.

В это же время, период свободных колебаний этого контура вычисляется по:

Формула — период свободных колебаний

Где C – это конденсатор, реактивный элемент схемы, отдающий накапливающий электрическую энергию конкретной цепи. Величина индуктивного сопротивления в такой цепи вычисляется по XL = U/I. Здесь X – это емкостное сопротивление. При расчете резистора в пример вставляются основные параметры этого элемента.

Индуктивность соленоида определяет формула:

Формула — индуктивность катушки-соленоида

Помимо этого, уровень индуктивности имеет определенную зависимость от температуры на плате. Параллельное подключение нескольких деталей, изменение плотности и размеров витков обмотки и прочие параметры влияют на основные свойства этого элемента.

Фото — зависимость от температуры

Чтобы узнать параметры катушки индуктивности, можно использовать различные методы: измерить мультиметром, испытать на осциллографы, проверить отдельно амперметром или вольтметром.

Эти варианты очень удобны тем, что в них в качестве реактивных элементов применяются конденсаторы, электропотери которых очень малы и могут не учитываться в расчетах. Иногда с целью упростить задачу применяется специальная программа расчета и измерения нужных параметров.

Это позволяет значительно упростить выбор нужных элементов для схем.

Купить катушки индуктивности (SMD 150 мкГн и другие) и провода для их намотки можно в любом электротехническом магазине, их цена варьируется от 2 долларов до нескольких десятков.

Источник: https://www.asutpp.ru/katushki-induktivnosti.html

Индуктивность: взаимная индуктивность, собственная индуктивность, катушка индуктивности

В статье мы рассмотрим понятие индуктивности, что такое катушка индуктивности, подробно разберем закон Неймана или по-другому «взаимная индуктивность», покажем все на примере с формулами.

Взаимная индуктивность, формула Неймана

Предположим, что у нас есть две проводящие петли, петля номер один, взаимодействующая с ней, и петля номер два, вызывающая в ней магнитный поток, используя равенство индукции магнитного поля и определение индукции магнитного поля через векторный потенциал магнитного поля и изменив в этом потоке интеграл на поверхности, ограниченный замкнутым контуром, на интеграл по контуру, затем:

(1)

Из магнитостатики векторный магнитный потенциал магнитного поля из первой петли определяется как:

(2)

Если подставить формулу для векторного магнитного потенциала (2) в формулу для магнитного потока, ограниченного каким-либо произвольным контуром (1), то:

(3)

Очевидно, что формула (3) после перестановки круговых интегралов в одно место, эквивалентна:

(4)

Здесь R — расстояние друг от друга: dl(1) от dl(2)

Формула (4) может быть сохранена в виде разделения константы M 12 , тогда:

(5)

где

(6)

Формула для размера взаимной индукции (6) является симметричной из-за регулировки dl(1) от dl(2), то есть взаимная индукция после этого изменения не меняется, она симметрична. Очевидно, что она не зависит от времени.

 Значение M_12 в формуле (6) это формула Неймана .

 Если подставить формулу (5) в интегральную формулу Фарадея для первого цикла, аналогично и для второго цикла, то тогда закономерность взаимной индукции второй петли относительно первой петли для электродвижущей силы для двух петель выражаются в формулах:

(7)(8)

Мы видим, что закономерности для электромагнитной силы одинаковы, но они зависят от изменений длительности электрического тока во втором контуре (формула (7) ) или в первом контуре (формула (8)).

Собственная индуктивность

Здесь мы будем иметь дело только с одним контуром, который магнитно взаимодействует с самим собой.

Закон Фарадея и собственная индукция

Мы должны иметь дело с индуктивностью, когда одна и та же цепь взаимодействует с одной и той же цепью магнетизмом, то есть это особый случай взаимной индуктивности. Мы записываем формулу для этой ситуации:

Ф = L*I (9)

Тогда формула для электромагнитной силы возникает после подстановки формулы (9) в закон Фарадея:

(10)

Формула для L такая же, как формула Неймана (6) , используется только двойное интегрирование по одному и тому же периметру, то есть геометрия применяется только к одной цепи.

Собственная энергия магнитной системы

Сила, создаваемая против ЭДС в индуктивности собственной цепи, зависит от электродвижущей силы, вызванной самоиндукцией, если ток течет в ней, и от того, что ее работа выполняется против электромагнитной силы ЭДС в единицу времени, равна:

(11)

Используя определение электродвижущей силы, обусловленной собственной индуктивностью (10), которая вытекает из закона индуктивности Фарадея, мы спрашиваем себя, что работа выполнялась системой, когда ток в системе с индуктивностью L от I равен нулю до некоторой ненулевой величины, поэтому мы приходим к выводу:

(12)

Работа, выполненная против ЭДС в системе индуктивности L, после переписывания окончательного применения (12), выражается:

(13)

Это не зависит от того, как долго протекает ток, а зависит только от геометрии системы и тока, протекающего в нашей цепи, которая взаимодействует сама с собой в результате действия магнитного поля.

Катушка индуктивности

Далее мы поговорим о катушке индуктивности и способе измерения индуктивности.

Определение и теория катушек индуктивности

Катушка индуктивности — катушка из свёрнутого изолированного проводника, обладающая значительной индуктивностью при относительно малой ёмкости и малом активном сопротивлении, способная накапливать электромагнитную энергию в собственном магнитном поле. Обозначается – L. Внешний вид может быть различным, но если вы её мотаете самостоятельно, то будет выглядеть как-то так:

Величина индуктивности измеряется в Генри [Гн].

1 Генри – очень большая величина, поэтому применяемые в технике катушки индуктивности имеют величины: микрогенри – 10-6 (мкГн) и миллигенри – 10-3 (мГн).

Процессы, происходящие в катушке индуктивности (далее — индуктивности) на временном графике при подключении индуктивности к источнику прямоугольного однополярного сигнала, показаны на рисунке.

Из рисунка сбоку видно, реакция индуктивности на воздействие электрического тока абсолютно противоположно реакции конденсатора (ёмкости). В момент подачи прямоугольного импульса источника тока (красный), ток индуктивности (фиолетовый) сначала равен нулю и с изменением времени увеличивается по экспоненте – индуктивность накапливает энергию, в начальный момент её внутреннее сопротивление максимально.

Напряжение на выводах индуктивности (зелёный) наоборот сначала максимально, но потом по мере накопления энергии уменьшается по экспоненте до нуля. При пропадании входного импульса, так как индуктивность — элемент инерционный, напряжение на выводах индуктивности резко изменив полярность сначала максимально, а ток продолжает течь в том же направлении, уменьшаясь при этом по экспоненте – запасённая в индуктивности энергия иссякает.

Напряжение из отрицательной области так же по экспоненте стремится к нулю. Скорость изменения напряжения и тока зависит от значения индуктивности. Чем больше индуктивность, тем медленнее они изменяются (экспонента более вытянута по времени). Напряжение и ток на нагрузочном резисторе ведут себя одинаково, и изображены на временном графике оранжевым цветом. Если сравнить с конденсатором — полная противоположность.

Взаимосвязь тока и напряжения в индуктивности так же описывается законом Ома, с учётом реактивного сопротивления индуктивности.

Фактически, мы рассмотрели «четырёхполюсник» состоящий из катушки индуктивности и резистора, который называют интегрирующей цепочкой.

Интегрирующая цепочка чаще всего применяется для формирования пилообразных импульсов в любой радио аппаратуре и временной (ударение на «о») задержки прямоугольных импульсов. Чтобы, Вам было понятнее, интегрирующая цепочка и получение пилообразного импульса изображены на следующем рисунке. Для получения последнего, используется наиболее прямолинейный участок интегрированного импульса — его начало, и «обрезается» по времени или по амплитуде (порогу).

Для задержки импульсов используют пороговое устройство. По достижении амплитуды сигнала прошедшего через интегрирующую цепочку определённого значения (порога), пороговое устройство пропускает входной сигнал на выход. После чего, сигнал усиливается усилителем до необходимой величины. В целях уменьшения размеров (исключения громоздкости), схемы формирования пилообразных импульсов, и схемы задержки импульсов эффективнее делать на интегрирующей цепочке состоящей из резистора и конденсатора.

Кроме функции преобразования прямоугольных импульсов, интегрирующая цепочка может применяться в качестве фильтра низких частот (ФНЧ). Индуктивность – инертный элемент.

Если к дросселю с большим значением индуктивности приложить переменное напряжение высокой частоты, в силу своей инертности, индуктивность будет не способной пропустить через себя ток, ведь индуктивности сначала надо будет запастись энергией в собственном сердечнике, а потом отдавать эту энергию.

Свойство индуктивности сопротивляться переменному электрическому току называют реактивным сопротивлением индуктивности, которое используется при конструировании частотных фильтров и колебательных контуров. Реактивное сопротивление индуктивности обозначается XL или ZL и измеряется в Омах. Реактивное сопротивление индуктивности связано с частотой тока выражением:

Из формулы видно, что реактивное сопротивление индуктивности прямо пропорционально частоте. Другими словами, чем выше частота, тем больше реактивное сопротивление индуктивности.

Теперь представьте, что интегрирующая цепь, это – описанный на сайте делитель напряжения, где вместо первого резистора выступает индуктивность. А мы из формулы теперь знаем, что индуктивность легко пропускает низкие частоты – его сопротивление минимально и плохо пропускает высокие частоты – его сопротивление максимально.

Не изменяя текста повторюсь: В радиоэлектронике, когда рассчитывают частотные фильтры, то считают характеристикой фильтра – частоту среза, которая определяется как значение частоты сигнала, на котором амплитуда выходного сигнала уменьшается (затухает) до значения 0,7 от входного сигнала.

Чтобы было понятнее, изображу это на рисунке.

То, что изображено, называется амплитудно-частотной характеристикой, или сокращённо — АЧХ. Для фильтра высоких частот соответствует АЧХ фиолетового цвета, и частота среза равная значению f2.

Зная, как рассчитывается делитель напряжения и реактивное сопротивление индуктивности на определённой частоте, Вы элементарно можете рассчитать простейший г-образный фильтр низкой частоты на катушке индуктивности и резисторе.

Если в интегрирующей цепочке поменять местами индуктивность и резистор, то мы получим – дифференцирующую цепочку. Все процессы в дифференцирующей цепочке происходят точно так же, как и в интегрирующей. Временные графики, показанные на первом рисунке абсолютно справедливы для дифференцирующей цепочки. Отличие заключается в том, что выходным элементом является не резистор, а катушка индуктивности.

Как описывалось в статье про конденсатор: если дифференцирующая цепочка – это фильтр высоких частот, то интегрирующая цепочка – это фильтр низких частот (ФНЧ). И рассчитывается он так же, через делитель напряжения. Для фильтра низких частот соответствует АЧХ на рисунке — оранжевого цвета, и частота среза равная значению f1.

Cледует добавить, частотные фильтры, выполненные на катушках индуктивности и резисторах, так же, как и на конденсаторах и резисторах имеют пологую амплитудно-частотную характеристику. Другими словами у таких фильтров слабо выражен частотный срез. Более качественный срез, имеют фильтры состоящие из конденсаторов и катушек индуктивности, но об этом в следующей статье.

Способ измерения индуктивности

Наверняка прочитав данную статью, грамотный читатель подумает: «Хм, теория это конечно хорошо, но как измерить руками значение индуктивности на практике?». Однажды этим вопросом задался и я, и собрал простую схему для проверки индуктивностей.

Источник: https://meanders.ru/induktivnost.shtml

Понравилась статья? Поделиться с друзьями:
220 вольт
Нагревательный элемент стич или тэн что лучше

Закрыть