Как рассчитать индуктивность катушки

Как рассчитать индуктивность катушки без сердечника?

> Теория > Расчет катушки индуктивности

Катушки индуктивности предназначены для фильтрации токов высокой частоты. Они устанавливаются в колебательных контурах и используются для других целей в электрических и электронных схемах. Готовое устройство заводского изготовления надёжнее в работе, но дороже, чем изготовленное своими руками. Кроме того, не всегда удаётся приобрести элемент с необходимыми характеристиками. В этом случае расчёт катушки  индуктивности и само устройство можно сделать самостоятельно.

Устройство катушки индуктивности

Конструкция катушки

Каркас устройства изготавливается из диэлектрика. Это может быть тонкий (нефольгированный) гетинакс, текстолит, а на тороидальных сердечниках –просто обмотка из лакоткани или аналогичного материала.

Обмотка выполняется из одножильного или многожильного изолированного провода.

Внутрь обмотки вставляется сердечник. Он изготавливается из железа, трансформаторной стали, феррита и других материалов. Он может быть замкнутым, тороидальным (бублик), квадратным или незамкнутым (стержень). Выбор материала зависит от условий работы: частоты, магнитного потока и других параметров.

Кроме того, есть приборы, в которых сердечник отсутствует. Они характеризуются большой линейностью импеданса, но при намотке тороидальной формы обладают паразитной ёмкостью.

Расчет параметров катушки индуктивности

Протекающий по проводу электрический ток создаёт вокруг него электромагнитное поле. Соотношение величины поля к силе тока называется индуктивностью. Если провод свернуть кольцом или намотать на каркас, то получится катушка индуктивности. Её параметры рассчитывают по определённым формулам.

Расчёт индуктивности прямого провода

Индуктивность прямого стержня – 1-2мкГн на метр. Она зависит от его диаметра. Точнее можно рассчитать по формуле:

L=0.2l(logl/d-1), где:

  • d – диаметр провода,
  • l – длина провода.

Эти величины нужно измерять в метрах (м). При этом результат будет иметь размерность микрогенри (мкГн). Вместо натурального логарифма ln допустимо использовать десятичный lg, который в 2,3 раза меньше.

Предположим, что какая-то деталь подключена проводами длиной 4 см и диаметром 0,4 мм. Произведя при помощи калькулятора расчет по выше приведённой формуле, получаем, что индуктивность каждого из этих проводов составит (округлённо) 0,03 мкГн, а двух – 0,06 мкГн.

Ёмкость монтажа составляет порядка 4,5пФ. При этом резонансная частота получившегося контура составит 300 МГц. Это диапазон УКВ.

Важно! Поэтому при монтаже устройств, работающих в частотах УКВ, длину выводов деталей нужно делать минимальной.

Расчёт однослойной намотки

Для увеличения индуктивности провод сворачивается кольцом. Величина магнитного потока внутри кольца выше примерно в три раза. Рассчитать её можно при помощи следующего выражения:

L = 0,27D(ln8D/d-2), где D – диаметр кольца, измеренный в метрах.

При увеличении количества витков индуктивность продолжает расти. При этом индукция отдельных витков влияет на соседние, поэтому получившиеся параметры пропорциональны не количеству витков N, а их квадрату.

Дроссель с сердечником

Параметры обмотки, намотанной на каркас, диаметром намного меньше длины рассчитывается по формуле:

L=*0*N2*S.

Она справедлива для устройства большой длины или большого тора.

Размерность в ней дана в метрах (м) и генри (Гн). Здесь:

  • 0 = 4•10-7 Гн/м – магнитная константа,
  • S = D2/4 – площадь поперечного сечения обмотки, магнитная проницаемость магнитопровода, которая меньше проницаемости самого материала и учитывает длину сердечника; в разомкнутой конструкции она намного меньше, чем у материала.

Например, если стержень антенны изготовить из феррита с проницаемостью 600 (марки 600НН), то у получившегося изделия она будет равна 150. При отсутствии магнитного сердечника = 1.

Для того чтобы использовать это выражение для расчёта обмоток, намотанных на тороидальном сердечнике, его необходимо измерять по средней линии «бублика». При расчёте обмоток, намотанных на железе Ш-образной формы без воздушного зазора, длину пути магнитного потока измеряют по средней линии сердечника.

Катушка с Ш-образным сердечником

В расчёте диаметр провода не учитывается, поэтому в низкочастотных конструкциях сечение провода выбирается по таблицам, исходя из допустимого нагрева проводника.

В высокочастотных устройствах, так же как и в остальных, стремятся свести омическое сопротивление к минимуму для достижения максимальной добротности прибора. Простое повышение сечения провода не помогает. Это приводит к необходимости наматывать обмотку в несколько слоёв. Но ток ВЧ идёт преимущественно по поверхности, что приводит к увеличению сопротивления. Добротность в высокочастотных элементах растёт вместе с увеличением всех размеров: длины и диаметров обмотки и провода.

Максимальная добротность получается в короткой обмотке большого диаметра, с соотношением диаметр/длина, равным 2,5. Параметры такого устройства вычисляются по формуле:

L=0.08D2N2/(3D+9b+10c).

В этой формуле все параметры измеряются в сантиметрах (см), а результат получается в микрогенри (мкГн).

По этой формуле рассчитывается также плоская катушка. Диаметр «D» измеряется по среднему витку, а длина «l» по ширине:

l=Dmax-Dmin.

Многослойная намотка

Многослойная намотка без сердечника вычисляется по формуле:

L=0.08D2N2/(3D+9b+10c).

Размеры здесь измеряются в сантиметрах (см), а результат получается в микрогенри (мкГн).

Добротность такого устройства зависит от способа намотки:

  • обычная плотная намотка – самая плохая, не более 30-50;
  • внавал и универсал;
  • «сотовая».

Для увеличения добротности при частоте до 10 мГц вместо обычного, одножильного провода, можно взять литцендрат или посеребренный проводник.

Справка. Литцендрат – это провод, скрученный из большого количества тонких изолированных друг от друга жил.

Литцендрат имеет большую поверхность, по сравнению с одножильным проводником того же сечения, поэтому на высоких частотах его сопротивление ниже.

Использование сердечника в высокочастотных устройствах повышает индуктивность и добротность катушки. Особенно большой эффект даёт использование замкнутых сердечников. При этом добротность дросселя зависит не от активного сопротивления провода, а от проницаемости магнитопровода. Рассчитывается такой прибор по обычным формулам для низкочастотных устройств.

Сделать катушку или дроссель можно самостоятельно. Перед тем, как её изготавливать, необходимо рассчитать индуктивность катушки по формулам или при помощи онлайн-калькулятора.

Источник: https://1000eletric.com/kak-rasschitat-induktivnost-katushki-bez-serdechnika/

Расчет и изготовление катушки КВ диапазона для регенеративного радиоприемника

Эксперимент по переделыванию батарейного регенератора(регенеративный радиоприемник) на лампе 2К2М под диапазон коротких волн(КВ, SW). Описано и проиллюстрированорасчет и изготовление катушки индуктивности для КВ диапазона. Также кратко расскажу как ведет себя приемник с новой катушкой и что изменилось.

:

Предисловие

Раньше мною был изготовлен несложный одноламповый радиоприемник, о нем я рассказывал подробно в статье: Регенеративный батарейный радиоприемник на лампе 2К2М

Этот радиоприемник построен на радиолампе 2К2М и принимал радиовещательные станции в диапазонах СВ(средние волны), MW(middle waves) и ДВ(длинные волны), LW(long waves). Позже мне пришла идея попробовать переделать его под КВ(короткие волны), SW(short waves) диапазон.

Анализ и подготовка

Просмотрев несколько схем коротковолновых регенеративных радиоприемников, где так же используется катушка связи, пришел к выводу что для эксперимента достаточно будет сделать новую контурную катушку индуктивности.

Радиолампа 2К2М может работать на частотах до 25МГц, поэтому ее можно смело оставить, не меняя на более высокочастотную.

Что немного смущало так это емкость контурного КПЕ(конденсатор переменной емкости), она лежит в пределах 20-400 пФ, что для КВ диапазона немножко многовато как для минимального значения так и для максимального. Менять КПЕ не планировалось, поскольку все уже хорошо сидит на шасси, была лишь идея попробовать немножко сузить его емкость, подключив последовательно конденсатор некоторой емкости.

Общая емкость двух последовательно соединенных конденсаторов можно рассчитать по формуле:

С общ = (C1*C2) / (C1+C2)

При подключении к КПЕ(20-400пФ) последовательно конденсатора 50пФ общая емкость с регулировкой будет 14-44пФ. Не очень хорошее значение, хотя можно попробовать.

Теперь нам нужно рассчитать  катушку индуктивности чтобы можно было принимать радиостанции в диапазоне КВ. На одном форуме нашел пост где человек изготавливал регенератор и для катушки КВ диапазона (40-80м) использовал вот такие данные:

  • Диаметр каркаса — 45мм;
  • Контурная катушка содержит 12 витков эмалированного провода диаметром 0.8мм;
  • Катушка связи содержит 3 витка эмалированного провода диаметром 0.5мм.

Доверяй, но проверяй! — давайте не поленимся и рассчитаем чего мы сможем добиться от катушки с такими параметрами.

Расчет индуктивности однослойной катушки

Посчитаем по формулам индуктивность однослойной контурной катушки с параметрами намотки что приведены выше. Для наглядности нарисовал рисунок:

Рис. 1. Катушка индуктивности, параметры.

Формула рассчета индуктивности катушки:

L = D*D*n*n / (45*D + 100*l), где:

  • L — индуктивность катушки, мкГн;
  • D — диаметр катушки, см;
  • n — число витков катушки;
  • l — длина намотки катушки, см.

L = 4.5*4.5*12*12 / (45*4.5 + 100*1.1) = 2916 / (202.5 + 110) = 9.3 мкГн(µH) =0.0000093 Гн = 9.3 * 10−6 Гн.

Индуктивность катушки что содержит 12 витков провода (примерно 1,1 см в длину проводом 0.8мм) и намотана на каркасе диаметром 45мм составляет — 9.3 мкГн(µH). Все просто!

Расчет частоты колебательного контура

Зная индуктивность катушки и емкость конденсатора в нашем колебательном контуре сможем рассчитать его резонансную частоту.

Рис. 2. Схема колебательного контура.

Расчет частоты колебательного контура проведем используя формулу:

ƒ = 1 / (2 * π * √(LC)), где:

  • ƒ — резонансная частота контура, Гц;
  • π — число Пи, 3,1415;
  • L — индуктивность катушки, Гн;
  • С — емкость конденсатора, Ф.

Рассчитаем частоту колебательного контура взяв при этом нижнюю емкость конденсатора КПЕ что у меня есть: С = 20 пФ = 0.00000000002 Ф  = 20 * 10−12Ф.

ƒ1 = 1 / (2 * 3.14 * √ (0.00000000002*0.0000093)) = 11675725,7 Гц = 11,67 МГц.

Теперь то же самое но берем верхнюю границу емкости КПЕ, возьмем больше половины: С = 300пФ = 0.0000000003 Ф = 300 * 10−12Ф.

ƒ2 = 1 / (2 * 3.14 * √ (0.0000000003*0.0000093)) = 3014659,4 Гц = 3,01 МГц.

И того, используя катушку индуктивности с приведенными выше параметрами и мой КПЕ я смогу покрыть диапазон примерно  от 3 до 11 МГц.

Таблица КВ диапазонов

Короткие волны, отражаясь от поверхности земли могут распространяться на достаточно большие дистанции. То, насколько качественно мы сможем принимать волны разной длины зависит от многих факторов, одним из наиболее выраженных является время суток: день или ночь.

В день хорошо распространяются менее длинные волны, а ночью — большей длины.

Ниже приведу для справки таблицу вещательных КВ диапазонов с примечанием по зависимости от времени суток:

  • 11 метров, 25.600 — 26.100 MHz (дневной);
  • 13 метров, 21.450 — 21.850 MHz (дневной);
  • 15 метров, 18.900 — 19.020 MHz (дневной);
  • 16 метров, 17.480 — 17.900 MHz (дневной);
  • 19 метров, 15.100 — 15.900 MHz (дневной);
  • 21 метр, 13.500 — 13.870 MHz;
  • 25 метров 11.600 — 12.100 MHz;
  • 31 метра, 9.400 — 9.990 MHz;
  • 41 метра, 7.200 — 7.600 MHz;
  • 49 метров, 5.730 — 6.295 MHz;
  • 60 метров, 4.750 — 5.060 MHz (ночной);
  • 75 метров, 3.900 — 4.000 MHz (ночной);
  • 90 метров, 3.200 — 3.400 MHz (ночной);

Источник: https://ph0en1x.net/46-one-tube-regen-radio-sw-band-coil.html

Расчет катушки индуктивности

При построении электронных устройств часто приходится сталкиваться с индуктивным элементом схемы. Когда на чертеже указано только значение индуктивности L, то расчет катушки индуктивности приходится выполнять самостоятельно. В интернете есть множество программ, позволяющих выполнять расчёт индуктивности катушек онлайн при помощи специального калькулятора. Зная то, как устроен элемент, можно вручную произвести все вычисления.

Что такое катушка индуктивности

Данный элемент ещё называют дросселем. Это свёрнутый в спираль изолированный провод. Для такой спирали характерны большие индуктивные и маленькие ёмкостные параметры.

Важно! Дроссель препятствует протеканию переменного тока, потому что обладает существенной инерционностью. Она препятствует любому изменению проходящего через витки тока. При этом нет разницы, увеличивается он или уменьшается.

В связи с этим данные элементы применяют в электротехнике для осуществления:

  • токоограничения;
  • ослабления биений;
  • помехоподавления;
  • формирования магнитного поля;
  • изготовления датчиков движения.

Дроссель входит в систему колебательного контура в цепях резонанса и применяется в линиях задержки.

Применение L в колебательном контуре

Какие параметры есть у катушки

От того, где будет применяться индуктивный элемент и на какой частоте работать, зависит его исполнение. Имеются общие параметры:

  • L – индуктивность;
  • R пот – сопротивление потерь;
  • Q – добротность;
  • свой резонанс и паразитарная ёмкость;
  • коэффициенты ТКИ и ТКД.

От чего зависит индуктивность

Индуктивность (коэффициент самоиндукции) L – это главная электрическая характеристика элемента, которая показывает количество накапливаемой дросселем энергии при передвижении тока. Величина энергии в катушки тем выше, чем больше её индуктивность. Единица измерений L – 1 Гн.

При взаимодействии тока и магнитного поля в обмотке возникают вредные явления. Они способствуют возникновению потерь, которые обозначают R пот. Формула потерь имеет вид:

R пот = rω + rd + rs + re.

Слагаемые формулы это потери:

  • rω – в проводах;
  • rd – в диэлектрике;
  • rs – в сердечнике;
  • re – на вихревые токи.

В результате таких потерь импеданс индуктивного двухполюсника нельзя назвать целиком реактивным.

Добротность двухполюсника определяется по формуле:

Q = ω*L/R пот,

где ω*L = 2π*L – реактивное сопротивление.

При наматывании витков элемента между ними возникает ненужная ёмкость. Из-за этого дроссель превращается в колебательный контур с собственным резонансом.

ТКИ – показатель, описывающий зависимость L от Т0С.

ТКД – показатель, описывающий зависимость добротности от Т0С.

Информация. Изменение основных параметров индуктивного двухполюсника зависит от коэффициентов ТКИ, ТКД, а также от времени и влажности.

Зачем нужен расчёт индуктивности

Расчет мощности трехфазной сети

Расчет индуктивности нужен, потому что конструктивно это могут быть по-разному выполненные катушки. Применение дросселей в разных отраслях электрики и электроники, их работа под влиянием постоянного и переменного тока требуют тщательного подбора индуктивности, добротности и стабильности работы. При выполнении своими руками дросселей заданного параметра L нужно выполнить расчёт. Для каждого типа индуктивного двухполюсника используется своя формула.

Расчет параметров катушки

Приходится при расчётах рассматривать разные варианты. Расчет индуктивности зависит от исходных данных и заданных конечных параметров.

Расчет L в зависимости от заданной конструкции

Если исходными параметрами являются: w, D каркаса и длина намотанного провода, то формула для расчёта имеет вид:

L = 0,01*D*w2/(l/D) + 0,46,

где:

  • D – диаметр каркаса, см;
  • w – число витков;
  • l – длина намотки, см;
  • L – индуктивность, мкГн.

Подставляя численные значения в формулу, получают значение L.

Расчет количества витков по индуктивности

Зная D каркаса и L, рассчитывают количество витков в катушке, формула имеет вид:

w = 32*√(L*D),

где:

  • L – индуктивность, мкГн;
  • D – диаметр каркаса, мм.

Если в качестве исходных параметров берутся длина навитого в ряд проводника и его диаметр, то количество витков находят, используя формулу:

w = l/d,

где:

  • l – длина намотки, мм;
  • d – диаметр провода, мм.

Измерения диаметра провода проводят линейкой или штангенциркулем.

ЭТО ИНТЕРЕСНО:  Как рассчитать мощность тэна

Факторы, влияющие на индуктивность катушки

Коэффициент самоиндукции зависит от следующих параметров:

  • геометрических особенностей каркаса;
  • формы оправки;
  • числа витков;
  • марки и диаметра провода;
  • свойств магнитопровода.

Интересно. Материал сердечников из распыленного железа выделяют разным цветом в зависимости от марки смеси. Сердечники такого рода используют для дросселей в импульсных устройствах.

Эквивалентная схема реальной катушки индуктивности

Каждый дроссель можно представить в виде эквивалентной схемы.

Данная схема состоит из элементов:

  • Rw – сопротивление обмотки с выводами;
  • L – индуктивность;
  • Cw – паразитная ёмкость;
  • Rl – сопротивление потерь.

Изготавливая индуктивный элемент, стремятся снизить величину сопротивления потерь, паразитную ёмкость. При работе катушки на низкой частоте учитывают сопротивление её обмотки Rw. На таких частотах действуют токи большой величины.

Эквивалентная схема дросселя

Правильно рассчитанная катушка индуктивности будет иметь высокую добротность (180-300) и стабильность работы при влиянии внешних условий (температуры и влажности). Зная способы различной намотки и манипуляции с шагом, можно уменьшить влияние паразитных факторов.

Источник: https://amperof.ru/teoriya/raschet-katushki-induktivnosti.html

Измерение параметров катушек индуктивности

Основным параметром, характеризующим контурные катушки, дроссели, обмотки трансформаторов является индуктивность L.

В высокочастотных цепях применяются катушки с индуктивностью от сотых долей микрогенри до десятков миллигенри; катушки, используемые в низкочастотных цепях, имеют индуктивность до сотен и тысяч генри.

Измерение индуктивности высокочастотных катушек, входящих в состав колебательных систем, желательно производить с погрешностью не более 5%; в большинстве других случаев допустима погрешность измерения до 10-20%.

Рис. 1. Эквивалентные схемы катушки индуктивности.

Каждая катушка, помимо индуктивности L, характеризуется также собственной (межвитковой) ёмкостью CL и активным сопротивлением потерь RL, распределёнными по её длине. Условно считают, что L, CL и RL сосредоточены и образуют замкнутую колебательную цепь (рис. 1, а) с собственной резонансной частотой

fL = 1/(LCL)0,5

Вследствие влияния ёмкости CL при измерении на высокой частоте f определяется не истинная индуктивность L, а действующее, или динамическое, значение индуктивности

Lд = L/(1-(2*π*f)2*LCL) = L/(1-f2/ fL2)

которое может заметно отличаться от индуктивности L, измеренной на низких частотах.

С повышением частоты возрастают потери в катушках индуктивности, обусловленные поверхностным эффектом, излучением энергии, токами смещения в изоляции обмотки и каркасе, вихревыми токами в сердечнике. Поэтому действующее активное сопротивление Rд катушки может заметно превышать её сопротивление RL, измеренное омметром или мостом постоянного тока. От частоты f зависит и добротность катушки:

QL = 2*π*f*Lд/Rд.

На рис. 1, б, представлена эквивалентная схема катушки индуктивности с учётом её действующих параметров. Так как значения всех параметров зависят от частоты, то испытание катушек, особенно высокочастотных, желательно проводить при частоте колебаний источника питания, соответствующей их рабочему режиму. При определении результатов испытания индекс «д» обычно опускают.

Для измерения параметров катушек индуктивности применяются в основном методы вольтметра — амперметра, мостовой и резонансный. Перед измерениями катушка индуктивности должна быть проверена на отсутствие в ней обрыва и короткозамкнутых витков. Обрыв легко обнаруживается с помощью любого омметра или пробника, тогда как выявление коротких замыканий требует проведения специального испытания.

Для простейших испытаний катушек индуктивности иногда используют электронно-лучевые осциллографы.

Индикация короткозамкнутых витков

Проверка на отсутствие короткого замыкания чаще всего производится помещением испытуемой катушки вблизи другой катушки, входящей в состав колебательного контура автогенератора, наличие колебаний в котором и их уровень контролируются с помощью телефонов, стрелочного, электронно-светового или иного индикатора. Катушка с короткозамкнутыми витками будет вносить в связанную с нею цепь активные потери и реактивное сопротивление, уменьшающие добротность и действующую индуктивность цепи; в результате произойдёт ослабление колебаний автогенератора или даже их срыв.

Рис. 2. Схема резонансного измерителя ёмкостей, использующего явление поглощения.

Чувствительным прибором подобного типа может служить, например, генератор, выполненный по схеме на рис. 2. Катушка с короткозамкнутыми витками, поднесённая к контурной катушке L1, будет вызывать заметное возрастание показаний микроамперметра μA.

Испытательная цепь может представлять собой настроенный на частоту источника питания последовательный контур (см.

«Радио», 72-5-54); напряжение на элементах этого контура, контролируемое каким-либо индикатором, под влиянием короткозамкнутых витков проверяемой катушки будет уменьшаться вследствие расстройки и возрастания потерь.

Возможно также использование уравновешенного моста переменного тока, одним из плеч которого в этом случае должна являться катушка связи (вместо катушки Lx); короткозамкнутые витки испытуемых катушек будут вызывать нарушение равновесия моста.

Чувствительность испытательного прибора зависит от степени связи между катушкой измерительной цепи и проверяемой катушкой, с целью её повышения желательно обе катушки насаживать на общий сердечник, который в этом случае выполняется разомкнутым.

При отсутствии специальных приборов для проверки высокочастотных катушек можно использовать радиоприёмник. Последний настраивают на какую-либо хорошо слышимую станцию, после чего вблизи одной из его действующих контурных катушек, например магнитной антенны (желательно на одной оси с нею), помещают проверяемую катушку.

При наличии короткозамкнутых витков громкость заметно уменьшится. Уменьшение громкости может иметь место и в том случае, если частота настройки приёмника окажется близкой к собственной частоте испытуемой катушки.

Поэтому во избежание ошибки испытание следует повторить при настройке приёмника на другую станцию, достаточно удалённую от первой по частоте.

Измерение индуктивностей методом вольтметра — амперметра

Метод вольтметра — амперметра применяется для измерения сравнительно больших индуктивностей при питании измерительной схемы от источника низкой частоты F = 501000 Гц.

Схема измерений представлена на рис. 3, а. Полное сопротивление Z катушки индуктивности рассчитывается по формуле

Z = (R2+X2)0,5 = U/I

на основе показаний приборов переменного тока V~ и mA~. Верхний (по схеме) вывод вольтметра присоединяют к точке а при Z  Za, где Zв и Za — полные входные сопротивления соответственно вольтметра V~ и миллиамперметра mA~. Если потери малы, т. е. R

Источник: http://zpostbox.ru/izmerenie_parametrov_katushek_induktivnosti.html

Индуктивность катушки формула через частоту – Катушка индуктивности. Описание, характеристики, формула расчета

Колебательный контур — электрическая цепь, в которой могут возникать колебания с частотой, определяемой параметрами цепи.

Простейший колебательный контур состоит из конденсатора и катушки индуктивности, соединенных параллельно или последовательно.

— Конденсатор C – реактивный элемент. Обладает способностью накапливать и отдавать электрическую энергию.
— Катушка индуктивности L – реактивный элемент. Обладает способностью накапливать и отдавать магнитную энергию.

Свободные электрические колебания в параллельном контуре

Основные свойства индуктивности:

— Ток, протекающий в катушке индуктивности, создаёт магнитное поле с энергией .
— Изменение тока в катушке вызывает изменение магнитного потока в её витках, создавая в них ЭДС, препятствующую изменению тока и магнитного потока.

Период свободных колебаний контура LC можно описать следующим образом:

Если конденсатор ёмкостью C заряжен до напряжения U, потенциальная энергия его заряда составит.
Если параллельно заряженному конденсатору подключить катушку индуктивности L, в цепи пойдёт ток его разряда, создавая магнитное поле в катушке.

Магнитный поток, увеличиваясь от нуля, создаст ЭДС в направлении противоположном току в катушке,что будет препятствовать нарастанию тока в цепи, поэтому конденсатор разрядится не мгновенно, а через время t1,которое определяется индуктивностью катушки и ёмкостью конденсатора из расчёта t1 = .
По истечении времени t1, когда конденсатор разрядится до нуля, ток в катушке и магнитная энергия будут максимальны.Накопленная катушкой магнитная энергия в этот момент составит.

В идеальном рассмотрении, при полном отсутствии потерь в контуре, EC будет равна EL.Таким образом, электрическая энергия конденсатора перейдёт в магнитную энергию катушки.

Изменение (уменьшение) магнитного потока накопленной энергии катушки создаст в ней ЭДС,которая продолжит ток в том же направлении и начнётся процесс заряда конденсатораиндукционным током. Уменьшаясь от максимума до нуля в течении времени t2 = t1,он перезарядит конденсатор от нуля до максимального отрицательного значения (-U).
Так магнитная энергия катушки перейдёт в электрическую энергию конденсатора.

Описанные интервалы t1 и t2 составят половину периода полного колебания в контуре.
Во второй половине процессы аналогичны, только конденсатор будет разряжаться от отрицательного значения, а ток и магнитный поток сменят направление.Магнитная энергия вновь будет накапливаться в катушке в течении времени t3, сменив полярность полюсов.

В течении заключительного этапа колебания (t4),накопленная магнитная энергия катушки зарядит конденсатор до первоначального значения U(в случае отсутствия потерь) и процесс колебания повторится.

В реальности, при наличии потерь энергии на активном сопротивлении проводников,фазовых и магнитных потерь, колебания будут затухающими по амплитуде.
Время t1 + t2 + t3 + t4 составит период колебаний .
Частота свободных колебаний контура ƒ = 1 / T

Частота свободных колебаний является частотой резонанса контура,на которой реактивное сопротивление индуктивности XL=2πfL равно реактивному сопротивлению ёмкости XC=1/(2πfC).

Расчёт частоты резонанса LC-контура:

Предлагается простой онлайн-калькулятор для расчёта резонансной частоты колебательного контура.

Необходимо вписать значения и кликнуть мышкой в таблице.
При переключении множителей автоматически происходит пересчёт результата.

Частота резонанса колебательного контура LC. ƒ = 1/(2π√(LC))

Расчёт ёмкости:

Ёмкость для колебательного контура LCC = 1/(4𲃲L)

Расчёт индуктивности:

Индуктивность для колебательного контура LCL = 1/(4𲃲C)

Похожие страницы с расчётами:

Рассчитать импеданс.Рассчитать реактивное сопротивление.

Рассчитать реактивную мощность и компенсацию.

tel-spb.ru

Индуктивное сопротивление катушки — Основы электроники

Так как самоиндукция препятствует всякому резкому изменению силы тока в цепи, то, следовательно, она представляет собой для переменного тока особого рода сопротивление, называемое индуктивным сопротивлением.

Чисто индуктивное сопротивление отличается от обычного (омического) сопротивления тем, что при прохождении через него переменного тока в нем не происходит потери мощности.

Под чисто индуктивным сопротивлением мы понимаем сопротивление, оказываемое переменному току катушкой, проводник которой не обладает вовсе омическим сопротивлением. В действительности же всякая катушка обладает некоторым омическим сопротивлением. Но если это сопротивление невелико по сравнению с индуктивным сопро¬тивлением, то им можно пренебречь.

При этом наблюдается следующее явление: в течение одной четверти периода, когда ток возрастает, магнитное поле потребляет энергию из цепи, а в течение следующей четверти периода, когда ток убывает, возвращает ее в цепь. Следовательно, в среднем за период в индуктивном сопротивлении мощность не затрачивается. Поэтому индуктивное сопротивление называется реактивным (прежде его неправильно называли безваттным).

Индуктивное сопротивление одной и той же катушки будет различным для токов различных частот. Чем выше частота переменного тока, тем большую роль играет индуктивность и тем больше будет индуктивное сопротивление данной катушки. Наоборот, чем ниже частота тока, тем индуктивное сопротивление катушки меньше. При частоте, равной нулю (установившийся постоянный ток), индуктивное сопротивление тоже равно нулю.

 Рисунок 1. Зависимость индуктивного сопротивления катушки от частоты переменного тока. Реактивное сопротивление катушки возрастает с увеличением часторы тока.

Индуктивное сопротивление обозначается буквой XL и измеряется в омах.

Подсчет индуктивного сопротивления катушки для переменного тока данной частоты производится по формуле

XL=2π• f •L

где XL — индуктивное сопротивление в ом; f—частота переменного тока в гц; L — индуктивность катушки в гн

Как известно, величину 2π• f называют круговой частотой и обозначают буквой ω (омега). Поэтому приведенная выше формула может быть представлена так:

XL=ω•L

Отсюда следует, что для постоянного тока (ω = 0) индуктивное сопротивление равно нулю. Поэтому, когда, нужно пропустить по какой-либо цепи постоянный ток, задержав в то же время переменный, то в цепь включают последовательно катушку индуктивности.

Для преграждения пути токам низких звуковых частот ставят катушки с железным сердечником, так называемые дроссели низкой частоты, а для более высоких радиочастот — без железного сердечника, которые носят название дросселей высокой частоты.

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Источник: https://biysk-tv.ru/raznoe-2/induktivnost-katushki-formula-cherez-chastotu-katushka-induktivnosti-opisanie-xarakteristiki-formula-rascheta-2.html

Расчёт катушки индуктивности: как найти число витков в катушке, формула

Катушка индуктивности является спиральным или винтовым проводником, который преобразовывает энергию электрополя в магнитное поле. Каково более полное определение этого элемента электроцепи, как сделать расчёт катушки индуктивности и что влияет на ее индуктивность? Об этом далее.

Описание устройства

Катушка индуктивности бывает винтовой, спиральной или винтоспиральной, имеющей свернутый изолированный проводник, который обладает значительным показателем индукции при малой емкости с активным сопротивлением. Как следствие, ток протекает через источник тока со значительной инерционностью.

Главный компонент электроцепи

Обратите внимание! Применяется, чтобы подавлять помехи, сглаживать биения, накапливать энергию, ограничивать переменный ток или резонансный/частотно-избирательный контур цепи.

Стоит указать, что ее применение разнообразно. Называется она дросселем, вариометром, соленоидом и токоограничивающим реактором. При этом основные технические характеристики варьируются. Могут отличаться силой тока, сопротивлением потерь, добротностью, емкостью и температурным добротным коэффициентом.

Полное определение из физики

Факторы, влияющие на индукцию

Влияет на индукцию число проводниковых витков, площадь поперечного сечения, длина и материалы. Благодаря увеличению витков повышается индукция и наоборот. Что касается сечения, чем больше источник, тем больше показатель. Также чем больше магнитный вид проницаемости, тем больше индуктивный показатель.

Факторы, влияющие на преобразование энергии в магнитное поле

Расчет

Вычислить число витков, зная конструкцию, можно по формуле нахождения энергии и ее магнитного поля W = LI2/2, где L является индукцией, I — силой тока. Витки находятся из формулы L/d, где d является проводным диаметром. Стоит указать, что есть специальный калькулятор, в который нужно только подставить необходимые параметры. При этом можно определить, однослойный или многослойный проводник.

Схематическое расположение витков в катушке

С сердечником

Стоит отметить, что со стержнем, намоткой, обмоткой индукция вычисляется через замкнутый магнитный поток индуктивных элементов, в то время как без него  учитывается поток, который пронизывает только проводник с токовой энергией. Расчитывая индуктивность подобных элементов, необходимо учесть размеры и материал центральной части.

Обобщенно можно представить формулу схематично. При этом требуется взять в расчет источник с сопротивлением магнитной цепи, абсолютной магнитной проницаемостью вещества, площадью поперечного сердечникового сечения и длиной средней силовой линии. Зная это, можно посчитать индукцию. Стоит учитывать погрешность. Она будет равна 25%.

Расчет индуктивности катушки с сердечником

Без сердечника

Стоит указать, что без ферритового, геометрического и цилиндрического сердечника с мощным каркасом источник имеет небольшую индукцию, а с ним она повышается. Это связано с тем, что имеется материальная магнитная проницаемость. Форма бывает разная. Есть броневой, стержневой и тороидальный материал.

Расчет индуктивности без сердечника

Катушка — незаменимый компонент любой электросети, который имеет вид скрученного или обвивающего элемента с проводником. Влияет на ее индукцию число проводных витков, площадь сечения, длина и материал сердечника. Отыскать количество витков и посчитать индуктивность с сердечником и без него несложно, главное — руководствоваться приведенными выше рекомендациями.

Источник: https://rusenergetics.ru/polezno-znat/raschyot-katushki-induktivnosti

Расчет катушек индуктивности для фильтров и схем

 Индуктивность катушки зависит от ее размеров, количества витков и способа намотки. Чем больше эти параметры, тем выше индуктивность. Если катушка наматывается плотно виток к витку, то индуктивность ее будет больше по сравнению с катушкой, намотанной неплотно, с промежутками между витками.

Когда требуется изготовить катушку по заданным размерам и нет провода нужного диаметра, то при использовании более толстого провода надо сделать больше витков, а тонкого — уменьшить их количество, чтобы получить необходимую индуктивность.

ЭТО ИНТЕРЕСНО:  Как определить активную мощность

Все приведенные выше рекомендации справедливы при намотке катушек без ферритовых сердечников.

Расчет однослойных цилиндрических катушек производится по формуле

где L — индуктивность катушки, мкГн; D — диаметр катушки, см; l — длина намотки катушки, см;

и n — число витков катушки.

Расчет катушки выполняется в следующих случаях:

1 — по заданным геометрическим размерам необходимо определить индуктивность катушки;
2 — при известной индуктивности требуется определить число витков и диаметр провода катушки. То есть намотать катушку определенной индуктивности, что часто скажем надо для фильтров.

В первом случае все исходные данные, входящие в формулу, известны, и расчет не представляет затруднений.

Пример. Определим индуктивность катушки, изображенной на рис.1, где l = 2 см, D = 1,8 см, число витков n = 20. Подставив в формулу все необходимые величины, получим

  Во втором случае известны диаметр катушки и длина намотки, которая, в свою очередь, зависит от числа витков и диаметра провода. Поэтому расчет рекомендуется проводить по следующей схеме. Исходя из конструкции изготавливаемого прибора, определяют размеры катушки (диаметр и длину намотки), а затем рассчитывают число витков по следующей формуле:  

Определив число витков, вычисляют диаметр провода с изоляцией по формуле

где d — диаметр провода, мм;

l — длина обмотки, мм;
n — число витков.

Пример. Нужно изготовить катушку диаметром 1 см при длине намотки 2 см, имеющую индуктивность 0,8 мкГн. Намотка рядовая, виток к витку. Подставив в последнюю формулу заданные величины, получим

диаметр провода

 Если катушку наматывать проводом меньшего диаметра, то нужно полученные расчетным путем 14 витков разместить по всей ее длине (20 мм) с равными промежутками между витками, то есть с большим шагом намотки. Индуктивность данной катушки будет на 1-2% меньше номинальной, что следует учитывать при ее изготовлении.

Если для намотки берется провод большего диаметра, чем 1,43 мм, следует сделать новый расчет, увеличив диаметр или длину намотки катушки. Возможно, придется увеличить и то, и другое одновременно, пока не будут получены необходимые габариты катушки, соответствующие заданной индуктивности.

Следует заметить, что по приведенным выше формулам рекомендуется рассчитывать катушки, у которых длина намотки l равна половине диаметра или превышает эту величину. Если же она меньше половины диаметра, то более точные результаты можно получить по формулам

Расчет катушек индуктивности под конкретный провод

 Пересчет катушек индуктивности производится при отсутствии провода нужного диаметра, указанного в описании конструкции, и замене его проводом другого диаметра, а также при изменении диаметра каркаса катушки.Если отсутствует провод нужного диаметра, можно воспользоваться другим. Изменение диаметра в пределах до 25% в ту или другую сторону вполне допустимо и, как правило, не отражается на качестве работы.

Более того, увеличение диаметра провода допустимо во всех случаях, так как при этом уменьшается омическое сопротивление катушки и повышается ее добротность. Уменьшение же диаметра ухудшает добротность и увеличивает плотность тока на единицу сечения провода, которая не может быть больше допустимой величины.

Пересчет количества витков однослойной цилиндрической катушки при замене провода одного диаметра другим производится по формуле

 где n — новое количество витков катушки; n1 — число витков катушки, указанное в описании; d — диаметр имеющегося провода; d1 — диаметр провода, указанного в описании.

В качестве примера приведем пересчет числа витков катушки, изображенной на рис.1, для провода диаметром 0,8 мм

 (длина намотки l = 18×0,8 — 14,4 мм).

Таким образом, количество витков и длина намотки несколько уменьшились. Для проверки правильности пересчета рекомендуется выполнить новый расчет катушки с измененным диаметром провода:

 При пересчете катушки, связанном с изменением ее диаметра, следует пользоваться процентной зависимостью между диаметром и числом витков.

Эта зависимость заключается в следующем: при увеличении диаметра катушки на определенное число процентов количество витков уменьшается на столько же процентов, и, наоборот, при уменьшении диаметра на равное число процентов увеличивается количество витков. Для упрощения расчетов за диаметр катушки можно принимать диаметр каркаса.

В качестве примера произведем пересчет числа витков катушки, имеющей 40 витков при длине намотки 2 см и диаметр каркаса 1,5 см, на диаметр, равный 1,8 см. Согласно условиям пересчета диаметр каркаса увеличивается на 3 мм, или на 20%.

Следовательно, для сохранения неизменной величины индуктивности этой катушки при намотке на каркас большого диаметра нужно уменьшить число витков на 20%, или на 8 витков. Новая катушка будет иметь 32 витка. Длина намотки также уменьшится на 20%, или до 1,6 см.

Проверим пересчет и определим допущенную погрешность. Исходная катушка имеет индуктивность:

 

Индуктивность новой катушки на каркасе с увеличенным диаметром:

 

Ошибка при пересчете составляет 0,32 мкГн, то есть меньше 2,5%, что вполне допустимо для расчетов в радиолюбительской практике.

Источник: http://xn-----7kcglddctzgerobebivoffrddel5x.xn--p1ai/kommunikatsii/elektronika/898-raschet-katushek-induktivnosti-dlya-filtrov-i-skhem

Расчёт катушки индуктивности под динамик

Добротность катушек, которые я мотаю для кроссоверов в акустику получается выше, чем у заводских, а активное сопротивление, при той же индуктивности – меньше. Звучат они заметно лучше заводских, особенно если их предварительно отслушать и поставить «по направлению».

Добротность у катушек большого диаметра, а я их делаю в виде бубликов – получается выше, чем у намотанных на обычных каркасах от трансформаторов или специальных каркасов для катушек.

Для кроссоверов это – хорошо, т.к. крутизна среза кроссовера с высокодобротными катушками получается более резкой.

Что приводит к снижению проникания сигнала в соседнюю полосу, а следовательно – к лучшей фильтрации.

Сами катушки и их каркасы периодически встречаются на радио рынках и барахолках. В СССР было выпущено бессчетное количество колонок S-90, S-50 и S-30. Вот как раз кроссоверы от этих колонок, либо детали от них попадаются довольно часто.

Форм фактор заводских катушек

Практически во всех зарубежных колонках, которые мне доводилось разбирать и переделывать стоят катушки, намотанные на каркасах малого диаметра и большой длины. Для увеличения индуктивности в них, как правило устанавливаются металлические сердечники из обычного прутка или пластин трансформаторной стали либо феррита.

Причина засилья подобных катушек в кроссоверах акустических систем – чисто практическая. Из-за того, что витки провода растянуты по большой длине и находятся на минимальном расстоянии от металлического сердечника, индуктивность катушки, выполненной в «длинном» форм-факторе получается максимально возможной.

При этом из-за малой длины каждого элементарного витка, активное сопротивление такой катушки также – оказывается минимальным. «Вытянутый» конструктив позволяет довольно прилично уменьшить диаметр и, следовательно – сечение необходимого для намотки такой катушки провода, оставаясь в заданных инженерами параметрах индуктивности и активного сопротивления.

Делают катушки в таком форм-факторе исключительно для того, чтобы сэкономить дорогостоящий медный провод.

У «длинных» катушек есть один, но жирный минус – их добротность намного ниже, чем у катушек, намотанных на каркасах большого диаметра. Добротность же – один из ее важнейших параметров, влияющих на крутизну среза звеньев кроссовера и подавление пиков излучения на частотной характеристике динамических головок.

В связи с невысокой добротностью, который показывают такие катушки будучи установленными в кроссоверах, крутизна среза НЧ/СЧ и СЧ/ВЧ звеньев фильтра оказывается недостаточной и на смежные динамические головки проникает сигнал из соседней полосы.

Если не вдаваться в теорию, то получается, то на частоте раздела звеньев кроссовера с малой крутизной спада одновременно играет и одна (например – НЧ) и вторая, смежная с ней головка (например – СЧ) головка. Такая синфазная работа двух головок на каком-то определенном участке частотного диапазона создает хорошо различаемую на слух интерференцию и дополнительные искажения.

Сердечники в катушках

В большинстве заводских катушек, применяемых для кроссоверов установлены ферромагнитные сердечники из пластин трансформатороной стали, или ферритовых стержней.

Иногда встречаются катушки, намотанные на ферритовых каркасах, выполненных в форме цилиндра со щечками.

Любой ферромагнетик, будучи введенным в катушку повышает ее индуктивность, а следовательно – для сохранения расчетных параметров, позволяет уменьшить витки и массу дорогостоящего медного провода.

К большому сожалению, ферромагнитные материалы в катушках на звук влияют ВСЕГДА отрицательно.

Так, железные сердечники, при больших уровнях сигнала и соотвесттвенно – громкости, нередко входят в насыщение, что приводит к резкому росту искажений, вносимых катушкой.

Хотя, казалось бы, катушка индуктивности это пассивный и теоретически – линейный элемент, откуда у него могут возникнуть искажения, свойственные скорее полупроводниковым приборам?

Я больше десяти раз проводил натурные эксперименты, когда в работающей колонке «по-горячему» менялись две катушки с одинаковой индуктивностью, одна с ферромагнитным сердечником, вторая – воздушная.

Это слышали на 100 % все, кто вместе со мной проводил эксперименты.

При высокой добротности у катушки легче убрать «горбы» на АЧХ путем установки т.н. вырезного фильтра параллельно головке. Вырезной фильтр, это включенные последовательно конденсатор, катушка и резистор.

Чем выше добротность катушки, тем больший номинал резистора можно поставить и тем меньше влияние вырезного фильтра на остальную АЧХ головки + цепь коррекции. Добротность, это отношение между реактивным и активным сопротивлением катушки Q = w L/R пот.

Наматывая индуктивности более толстым проводом, чем у штатных я уменьшаю их активное сопротивление, в итоге добротность катушек – возрастает.

 «Двойки» катушек испытывались в НЧ и СЧ звеньях кроссовера и ставились последовательно с динамическими головками.

Как я мотаю катушки

Я мотаю катушки для колонок самодельным литцендратом из 4-8 проводов диаметром 0,7-0,9 мм. Сначала все считал Точно рассчитать количество витков у меня никогда получается.

В итоге, мотаю на глаз, благо за свою жизнь сделал тысячи катушек и примерно знаю, какая будет индуктивность. Делаю так. Сначала мотаю пробную катушку одиночным проводом, и довожу ее индуктивность до требуемого номинала.

Затем доматываю еще 15–20 % витков.

Далее, мотаю на несколько специальных оправок, такое же количество витков, как у пробной катушки. Если финальная катушка должна состоять из 6 проводов, тогда мотаю еще пять, если из 4-х, еще три и т.д.

Количество изолированных моножил, которыми мотается итоговая катушка зависит от того, где она будет стоять. Если катушка нужна для включения последовательно с НЧ головкой, количество жил 6-8 штук, диаметр каждой 0,7-0,9 мм.

Итоговое сечение: 3-4 кв.мм.

Приведу пример:

Вчера мотал две катушки для полочных колонок ProAc Studio 115, в каждую заложил по 6 жил диаметром 0,8 мм. Итоговое сечение провода 3 кв.мм. кол-во витков 200, индуктивность 2,5 мГн, сопротивление постоянному току 0,4 Ома. Диаметр катушки 140 мм, высота 50 мм, вес 2 Кг.

НЧ катушки можно мотать моно жилой большого диаметра, а вот катушки, стоящие последовательно с СЧ или СЧ/НЧ головкой, намного лучше играют, если они намотаны вот таким самодельным литцендратом.

Из-за большей площади поверхности нескольких изолированных друг от друга проводников, чем у такой же по сечению моножилы, литцендрат намного лучше пропускает ВЧ сигнал чем одиночный провод.

Хотя НЧ катушка и призвана к тому, чтобы высокие от басовой головки отрезать, многожильные катушки играют на слух легче и воздушнее и это – факт.

Намотав катушку, зачищаю (не обрывая) 4-8 проводов с двух сторон, скручиваю плоскогубцами и измеряю, что получилось. Индуктивность намотанной «литцендратом» катушки с 15-20 % превышением витков над пробной «моножильной», как правило оказывается чуть больше искомой.

Далее, снимаю катушку с оправки и стягиваю ее 4-мя нейлоновыми хомутами. Получается довольно плотный «бублик» круглого, либо близкого к круглому сечения. Опять измеряю – индуктивность чуть возросла. Уминаю бублик на полу своим весом, а он 100 кг

Надо худеть! Индуктивность еще возросла. После этого отматываю 5-7 витков и не обрезая «литцендратный хвост», опять измеряю. Так довожу индуктивность катушки до искомой величины.

После чего – обрезаю хвост, зачищаю его, а саму катушку в 2-3 слоя обматываю изолентой хорошего качества, прямо с нейлоновыми хомутами.

Если нужно соблюсти точность в 1-2 %, что случается редко – не обрезанным «хвостом» корректирую индуктивность, намотав пару витков в том же (для увеличения) или в противоположном (для уменьшения) направлении.

Преимущества такого способа намотки: Катушки выполненные по описанной технологии получаются относительно большого диаметра и малой толщины с почти тороидальным (в разрезе) сечением.

Добротность катушек большого диаметра выше, чем намотанных на квадратных либо прямоугольных каркасах от трансформаторов, а сопротивление из-за тороидальной формы разреза катушки и круглой формы самой катушки – меньше.

Литцендрат для намотки НЧ, да и любых других катушек дает еще один «жирный» бонус: Для подключения динамиков и клемм к кроссоверам, с ним отпадает надобность в каких-то мягких проводах с непонятными акустическими свойствами.

К примеру – литцендрат НЧ катушки колонок ProAc Studio 115 (из 6-ти моножил по 0,8 мм) получился настолько мягким, что его без боязни механического обрыва, удалось подпаять к лепесткам динамика и входным терминалам. Внутри колонки создается весьма высокое давление и соответственно – вибрации.

В таких условиях распаивать лепестки динамика жесткой моножилой – получим риск обрыва. Ну и второй бонус – нет лишних проводов, значит нет 4-х лишних паек между ними, динамиками, катушками и входными терминалами.

Все вышеперечисленное благотворно влияет на звук, в чем я убеждался не один десяток раз.

Крепить катушку большого диаметра и малой толщины – просто. Я фиксирую ее к плате из текстолита при помощи 4-х нейлоновых хомутов.

Если катушку нужно установить вертикально, то креплю ее между двумя пластинами стеклотекстолита при помощи 2-х хомутов к нижней пластине и 2-х к верхней. Сами пластины стягиваю болтами М-4.

Получается очень жесткая двух-платная конструкция фильтра, в которой катушки можно расположить перпендикулярно друг другу, а значит – снизить их взаимное влияние.

Инструкция по намотке для коллег

Берете любую оправку, в данный момент я применяю оправки из бутылок для фанты или минеральной воды – и мотаете на ней пробную катушку. Я приноровился уже и примерно знаю, какое кол-во витков нужно намотать для того, чтобы получить нужную индуктивность. Могу потом составить таблицу. Намотав пробную катушку не снимая ее с оправки, измеряете получившуюся индуктивность.

С начала провода делаете полную зачистку кончика, а там где получился теоретический конец, соскабливаете лак с одной стороны (провод при этом не обрезаете). Если индуктивности мало, обматываете поврежденный участок кусочком изоленты и доматываете какое-то кол-во витков, после чего провод обрезаете. Витки при намотке пробной катушки естественно считаете.

ЭТО ИНТЕРЕСНО:  Что такое кабельный ввод

После этого берете вторую оправку (бутылку) и наматываете на нее такое же кол во витков, ну и еще два-шесть раз повторяете такое же действие. У вас получается 4-10 оправок с намотанными катушками в одну сторону.

Потом кладете все эти оправки в несколько картонных коробок на пол, оттягиваете от каждой оправки по кончику провода, соединяете их в пучок и наматываете общую катушку из 4-10 жил. Ваши оправки (бутылки) в лежачем положении и в коробках, никуда не укатываются и провод на них не путается.

У получившейся катушки из пучка индуктивность относительно одиночной катушки падает процентов на 10-20 не больше, не зависимо от количества проводов в пучке. Допустим, вы намотали на пробную катушку 150-170 витков провода 0,6-0,9 мм в диаметре и получили индуктивность в 1,3 мГн. После этого сделали еще 4 таких же катушки на бутылках.

Потом все провода перемотали на одну общую оправку. Диаметр этой катушки из-за увеличившего сечения провода – вырос, длина каждого витка увеличилась, а кол-во витков естественно – уменьшилось. У вас в итоге получилось уже не 150-170, а 120-130 витков. И как итог – индуктивность вашей катушки упала с 1,3 мГн до 1,0-1,1 мГн. Да и еще, подмеченная особенность.

Хотя по теории, в катушке, намотанной пучком проводов получается несколько одиночных (по количеству жил) катушек, соединенных параллельно. Индуктивность катушки, намотанной одиночным проводом практически совпадает с индуктивностью катушки, намотанной пучком изолированных друг от друга проводов и зависит только от количества витков. Вот такая история

В будущем хочу сделать специальные разборные оправки под катушки разного диаметра и толщины. Это не так просто поскольку требует специальных проточек (4-х) для заведения стягивающих нейлоновых хомутов.

Плюс оправки должны быть выполнены из немагнитного материала, желательно вообще их сделать не из металла, а например из: текстолита, эбонита, винипласта и т.д. Стягивать половинки такой оправки нужно немагнитными болтиками и гайками (из титана, дюраля или латуни).

 На сегодня я намотал за полтора года катушек 500-600 если не больше. Хочу заказать сначала один разборной каркас, попробую его в работе, скорректирую и потом уже закажу разные. Мне нужно, чтобы он состоял из двух половин, и на нем можно было мотать катушку формы тороида в сечении.

Источник: https://himediadom.ru/modeli/raschyot-katushki-induktivnosti-pod-dinamik.html

Электромагнитный расчет и оптимизация планарных катушек на печатных платах

Планарные катушки используются в самых различных устройствах — от датчиков артериального давления до платежных карт. Они располагаются на печатных платах и хорошо подходят для создания взаимных индуктивных связей, особенно при ограниченном пространстве.

При проектировании таких катушек важно точно рассчитать как индуктивность, так и активное сопротивление, так как эти факторы играют ключевую роль в производительности устройства.

Для эффективного описания катушек на плоскости инженеры могут использовать технологию задания многослойных оболочек (layered shell), доступную в пакете COMSOL®.

Планарные катушки: преимущества и примеры использования

Планарные катушки названы так из-за того, что все их части (витки) находятся практически на одной плоскости (т. е. они почти плоские).

Они занимают намного меньше места, чем другие индукторы, и поэтому подходят для любых практических приложений с ограничениями по размерам, что очень актуально, к примеру, в микроэлектромеханических системах (МЭМС) или в имплантированных медицинских устройствах, например, сердечных насосах.

Такие катушки могут изготавливаться как на жестких, так и на упругих подложках, и следовательно могут быть интегрированы как на классические печатные платы, так и на элементы для т.н. гибкой электроники. Планарные катушки также могут изготавливаться серийно, что является экономически выгодным.

Благодаря этим качествам, планарные катушки находят применение в различных областях, в основном, в высокочастотных приложениях. Некоторые примеры использования:

  • Дистанционный мониторинг состояния здоровья (например, датчики кровяного давления)
  • Беспроводная передача энергии (например, носимые/имплантируемые медицинские устройства)
  • Радиочастотная идентификация (например, платежные карты)
  • Индукционный нагрев (например, индукционные варочные панели)

Планарные катушки могут использоваться на печатных платах в портативных устройствах типа фитнес-трекеров.

В контексте разработки и проектирования планарных катушек наиболее важные характеристики — это индуктивность и сопротивление. Последнее определенно должно быть очень низким (в идеальном случае нулевым), так как любое сопротивление уменьшает эффективность катушки.

Индуктивность, напротив, для эффективной связи с другими системами должна быть высокой.

Определение сопротивления и индуктивности может являться достаточно сложной задачей, так как необходимо учитывать материал катушки, количество витков, связь между электрическими и магнитными полями.

Инженеры могут получить данные о сопротивлении и индуктивности планарных катушек на печатных платах численно, используя возможности модуля AC/DC для электромагнитных расчетов, являющегося расширением пакета COMSOL Multiphysics.

Это модуль содержит в числе прочих физический интерфейс Electric Currents, Layered Shell (Электрические токи в многослойных оболочках), который позволяет эффективно описывать и моделировать в т.ч. конструкции плоских катушек.

В качестве примера давайте рассмотрим простую модель планарной катушки.

Представление планарной катушки как многослойной оболочки с помощью модуля AC/DC

Модель представляет собой медную катушку, размещенную на печатной плате. Катушка содержит три витка, два межслойных соединения (перемычки), два контакта-терминала, один из которых служит источником тока, а второй заземлён. Ток с терминала начинает течь по верхнему слою.

Затем он переходит по соединительной перемычке (via) на нижний слой, далее – по нему под витками, обратно на верхний слой по второй перемычке (via), и, наконец, проходит по всем виткам к контакту заземления.

Протекая по катушке, ток индуцирует магнитное поле, причем отношение тока к магнитному полю как раз определяет индуктивность.

Геометрия планарной катушки, цветом на изображении показано распределение электрического потенциала.

Так как медная катушка является очень тонкой (толщина 0.1 мм, длина и ширина 0.5 мм), её предпочтительней моделировать в качестве граничного, а не объёмного компонента. Для того, чтобы описать топологию катушки в плоскости можно воспользоваться функционалом физического интерфейса Electric Currents, Layered Shell, который доступен с версии 5.

4 программного обеспечения COMSOL®. К тому же, данный интерфейс можно использовать совместно с физическим интерфейсом Magnetic Fields (Магнитные поля), что позволит провести анализ растекания токов, генерации магнитных полей и, следовательно, вычислить не только сопротивление, но и индуктивность катушки.

Процесс такого совместного расчета будет состоять из двух этапов:

  1. В рамках физического интерфейса Electric Currents, Layered Shell проводится расчёт как сосредоточенного сопротивления, так и поверхностной плотности тока в области катушки. Собственно данный интерфейс и предназначен для решения закона сохранения тока, протекающего по двумерному слою.
  2. Физический интерфейс Magnetic Fields затем использует рассчитанную в интерфейсе Electric Currents, Layered Shell поверхностную плотность тока для расчёта распределения магнитного поля вокруг катушки.

Не смотря на то, что конкретно этот пример довольно простой, вы можете использовать точно такой же подход для других более сложных геометрий и постановок. Чтобы узнать все детали и настройки выполненные при моделировании, ознакомьтесь с учебным примером Planar PCB Coil. По ссылке вы найдёте pdf-файл с пошаговыми инструкциями по сборке. А если у вас есть действующая лицензия, то сможете скачать и соответствующий MPH-файл модели.

Визуализация результатов электромагнитного расчета

После проведения расчета в результатах автоматически сгенерируются дефолтные графики с наиболее характерными визуализациями и величинами.

В данной модели выведены графики распределения электрического потенциала (показан выше), а также магнитного поля, которое создаётся током, протекающим по катушке (показано ниже). В дополнение к графическим результатам, также можно рассчитать числовые выражения, в т.ч. на основе классических формул.

В нашем случае, проведен расчет сопротивления и индуктивности. Для рассмотренной конструкции индуктивность равна 0.06 мкГн, а сопротивление — 21.6 мОм.

Распределение магнитной индукции вокруг катушки (цветом) и плотность тока (стрелки).

В данном примере мы продемонстрировали преимущества использования технологии по заданию многослойных оболочек в модуле AC/DC. С её помощью легко реализовать модель планарной катушки и определить сосредоточенные параметры — сопротивление и индуктивность.

Используя расчетные данные, инженеры могут проводить оптимизацию топологий катушек для определенных сфер применения, например, добавляя больше витков для увеличения индуктивности. Результаты расчета предсказывают увеличение индуктивности с 0.06 мкГн до 0.

11 мкГн при добавлении 4го витка.

Сравнение сопротивления и индуктивности для катушек с тремя и четырьмя витками. Визуализация распределения магнитной индукции приведена для случая четырёхвитковой катушки.

Дальнейшие шаги

Поработайте самостоятельно с рассмотренным примером расчета планарной катушки на печатной плате. По нажатию на кнопку вы перейдете в Библиотеку моделей и приложений (Application Gallery,), в которой сможете загрузить MPH-файл и документацию к рассмотренной модели.

Скачайте рассмотренную учебную модель

Дополнительные материалы

Источник: https://www.comsol.ru/blogs/optimizing-planar-coils-for-pcbs-with-electromagnetics-simulation/

Расчет индуктивности катушек (однослойных)

Как произвести расчет катушек индуктивности (однослойных, цилиндрических без сердечника)

Индуктивность катушки зависит от ее геометрических размеров, числа витков и способа намотки катушки. Чем больше диаметр, длина намотки и число витков катушки, тем больше ее индуктивность. То что делает катушка индуктивности в колебательных контурах является очень важным и от правильного расчета зависит добротность контура.

Если катушка индуктивности наматывается плотно виток к витку, то индуктивность ее будет больше по сравнению с катушкой, намотанной неплотно, с промежутками между витками. Когда требуется намотать катушку по заданным размерам и нет провода нужного диаметра, то при намотке ее более толстым проводом надо несколько увеличить, а тонким —    уменьшить число витков катушки, чтобы получить необходимую индуктивность.

Ресчет катушек индуктивности (однослойных, цилиндрических)

Рис. 1. Пример однослойной катушки индуктивности.

Все приведенные выше соображения справедливы при намотке катушек без ферритовых сердечников. Расчет однослойных цилиндрических катушек производится по формуле:

где:

  • L — индуктивность катушки, мкГн;
  • D — диаметр катушки, см;
  • I — длина намотки катушки, см;
  • n — число витков катушки.

При расчете катушки могут встретиться два случая:

  • а) по заданным геометрическим размерам необходимо определить индуктивность катушки;
  • б) при известной индуктивности определить число витков и диаметр провода катушки.

В первом случае все исходные данные, входящие в формулу, известны, и расчет не представляет затруднений.

Пример. Определим индуктивность катушки, изображенной на рис. 1; для этого подставим в формулу все необходимые величины:

Во втором случае известны диаметр катушки и длина намотки, которая, в свою очередь, зависит от числа витков и диаметра провода.

Поэтому расчет рекомендуется вести в следующей последовательности. Исходя из конструктивных соображений определяют размеры катушки, диаметр и длину намотки, а затем рассчитывают число витков по формуле:

После того как будет найдено число витков, определяют диаметр провода с изоляцией по формуле:

где:

  • d — диаметр провода, мм,
  • l — длина обмотки, мм,
  • n — число витков.

Пример. Нужно изготовить катушку диаметром 1 см при длине намотки 2 см, имеющую индуктивность 0,8 мкГн. Намотка рядовая виток к витку.

Подставив в последнюю формулу заданные величины, получим:

Диаметр провода:

Если эту катушку наматывать проводом меньшего диаметра, то нужио полученные расчетным путем 14 витков разместить по всей длине катушки (20 мм) с равными промежутками между витками, т. е. с шагом намотки.

Индуктивность данной катушки будет на 1—2% меньше номинальной, что следует учитывать при изготовлении таких катушек. При намотке в случае необходимости более толстым проводом, чем 1,43 мм, следует сделать новый расчет, увеличив диаметр или длину намотки катушки.

Возможно, также придется увеличить и то и другое одновременно, пока не будут получепы необходимые габариты катушки, соответствующие заданной индуктивности.

Следует заметить, что по приведенным пыше формулам рекомендуется рассчитывать такие катушки, у которых длина намотки l равна или больше половины диаметра. Если же длина намотки меньше D половины диаметра то более точные результаты можно получить по формулам:

Как произвести пересчет катушек индуктивности (однослойных, цилиндрических)

Необходимость в пересчете катушек индуктивности возникает при отсутствии нужного диаметра провода, указанного в описании конструкции, и замене его проводом другого диаметра; при изменении диаметра каркаса катушки.

Если отсутствует провод нужного диаметра, что является наиболее частой причиной пересчета катушек, можно воспользоваться проводом другого диаметра.

Изменение диаметра провода в пределах до 25% в ту или другую сторону вполне допустимо и в большинстве конструкций не отражается на качестве их работы. Более того, увеличение диаметра провода допустимо во всех случаях, так как оно уменьшает омическое сопротивление катушки и повышает ее добротность.

Уменьшение же диаметра ухудшает добротность и увеличивает плотность тока на единицу сечения провода, которая не может быть больше определенной допустимой величины.

Пересчет числа витков однослойной цилиндрической катушки при замене провода одного диаметра другим производится по формуле:

где:

  • n — повое число витков катушки;
  • n1 — число витков катушки, указанное в описании;
  • d— диаметр имеющеюся провода;
  • d1 — диаметр провода, указанный в описании.

В качестве примера произведем пересчет числа витков катушки, изображенной на рис. 1, для провода диаметром 0,8 мм:

(длина намотки l= 18 X 0,8 = 14,4 мм, или 1,44 см).

Таким образом, число витков и длина намотки несколько уменьшились. Для проверки правильности пересчета рекомендуется выполнить новый расчет катушки с измененным диаметром провода:

При пересчете катушки, связанном с изменением ее диаметра, следует пользоваться процентной зависимостью между диаметром и числом витков катушки.

Эта зависимость заключается в следующем: при увеличении диаметра катушки на определенное число процентов количество витков ее уменьшается на столько же процентов, и, наоборот, при уменьшении диаметра увеличивается число витков на равное число процентов. Для упрощения расчетов за диаметр катушки можно принимать диаметр каркаса.

Рис. 2. Катушки индуктивности. Пример.

Так, для примера произведем пересчет числа витков катушки (рис. 2, а), имеющей диаметр 1,5 см, на диаметр, равный 1,8 см (рис. 2, б). Согласно условиям пересчета диаметр каркаса увеличивается на 3 мм, или на 20%.

Следовательно, для сохранения неизменной величины индуктивности этой катушки при намотке ее на каркасе большего диаметра нужно уменьшить число витков на 20%, или на 8 витков. Таким образом, новая катушка будет иметь 32 витка.

Проверим пересчет н установим погрешность, допущенную в результате пересчета. Катушка (см. рис. 2, а) имеет индуктивность:

Новая катушка на каркасе с увеличенным диаметром:

Ошибка при пересчете составляет 0,25 мкГн, что вполне допустимо для расчетов в радиолюбительской практике.

Источник: http://radiostorage.net/1609-raschet-induktivnosti-katushek-odnoslojnyh.html

Понравилась статья? Поделиться с друзьями:
220 вольт
Для любых предложений по сайту: [email protected]