На что действует магнитное поле

Теория магнитного поля и интересные факты о магнитном поле Земли

Давайте вместе разбираться в том, что такое магнитное поле. Ведь многие люди живут в этом поле всю жизнь и даже не задумываются о нем. Пора это исправить!

Магнитное поле

Магнитное поле – особый вид материи. Оно проявляется в действии на движущиеся электрические заряды и тела, которые обладают собственным магнитным моментом (постоянные магниты).

Важно: на неподвижные заряды магнитное поле не действует! Создается магнитное поле также движущимися электрическими зарядами, либо изменяющимся во времени электрическим полем, либо магнитными моментами электронов в атомах. То есть любой провод, по которому течет ток, становится также и магнитом!

Магнит

Магнит — тело, обладающее собственным магнитным полем.

У магнита есть полюса, называемые северным и южным. Обозначения «северный» и «южный» даны лишь для удобства (как «плюс» и «минус» в электричестве).

Магнитное поле изображается посредством силовых магнитных линий. Силовые линии непрерывны и замкнуты, а их направление всегда совпадает с направлением действия сил поля. Если вокруг постоянного магнита рассыпать металлическую стружку, частицы металла покажут наглядную картину силовых линий магнитного поля, выходящих из северного и входящих в южный полюс. Графическая характеристика магнитного поля — силовые линии.

Картина магнитного поля

Характеристики магнитного поля

Основными характеристиками магнитного поля являются магнитная индукция, магнитный поток и магнитная проницаемость. Но давайте обо всем по порядку.

Сразу отметим, что все единицы измерения приводятся в системе СИ.

Магнитная индукция B – векторная физическая величина, являющаяся основной силовой характеристикой магнитного поля. Обозначается буквой B. Единица измерения магнитной индукции – Тесла (Тл).

Магнитная индукция показывает, насколько сильно поле, определяя силу, с которой оно действует на заряд. Данная сила называется силой Лоренца.

Здесь q — заряд, v — его скорость в магнитном поле, B — индукция, F — сила Лоренца, с которой поле действует на заряд.

Магнитный поток Ф –  физическая величина, равная произведению магнитной индукции на площадь контура и косинус между вектором индукции и нормалью к плоскости контура, через который проходит поток. Магнитный поток — скалярная характеристика магнитного поля.

Можно сказать, что магнитный поток характеризует количество линий магнитной индукции, пронизывающих единицу площади. Магнитный поток измеряется в Веберах (Вб).

Магнитный поток

Магнитная проницаемость – коэффициент, определяющий магнитные свойства среды. Одним из параметров, от которых зависит магнитная индукция поля, является магнитная проницаемость.

Магнитное поле Земли

Наша планета на протяжении нескольких миллиардов лет является огромным магнитом. Индукция магнитного поля Земли изменяется в зависимости от координат. На экваторе она равна примерно 3,1 на 10 в минус пятой степени Тесла. К тому же существуют магнитные аномалии, где значение и направление поля существенно отличаются от соседних областей. Одни из самых крупных магнитных аномалий на планете — Курская и Бразильская магнитные аномалии.

Происхождение магнитного поля Земли до сих пор остается загадкой для ученых. Предполагается, что источником поля является жидкое металлическое ядро Земли.  Ядро движется, значит, движется расплавленный железо-никелевый сплав, а движение заряженных частиц – это и есть электрический ток, порождающий магнитное поле. Проблема в том, что эта теория (геодинамо) не объясняет того, как поле сохраняется устойчивым.

Магнитное поле земли

Земля – огромный магнитный диполь. Магнитные полюса не совпадают с географическими, хотя и находятся в непосредственной близости. Более того, магнитные полюса Земли движутся. Их смещение регистрируется с 1885 года.

Например, за последние сто лет магнитный полюс в Южном полушарии сместился почти на 900 километров и сейчас находится в Южном океане. Полюс арктического полушария движется через Северный Ледовитый океан к Восточно-Сибирской магнитной аномалии, скорость его передвижения (по данным 2004 года) составила около 60 километров в год.

Сейчас наблюдается ускорение движения полюсов — в среднем скорость растет на 3 километра в год.

Каково значение магнитного поля Земли для нас? В первую очередь магнитное поле Земли защищает планету от космических лучей и солнечного ветра. Заряженные частицы из далекого космоса не падают прямо на землю, а отклоняются гигантским магнитом и движутся вдоль его силовых линий. Таким образом, все живое оказывается защищенным от пагубной радиации.

Магнитное поле Земли

За историю Земли происходило несколько инверсий (смен) магнитных полюсов. Инверсия полюсов – это когда они меняются местами. Последний раз это явление произошло около 800 тысяч лет назад, а всего геомагнитных инверсий в истории Земли было более 400. Некоторые ученые полагают, что с учетом наблюдающегося ускорения движения магнитных полюсов следующей инверсии полюсов следует ожидать в ближайшие пару тысяч лет.

К счастью, в нашем веке смены полюсов пока не ожидается. А значит, можно думать о приятном и наслаждаться жизнью в старом добром постоянном поле Земли, рассмотрев основные свойства и характеристики магнитного поля. А чтобы Вы могли это делать, существуют наши авторы, которым можно с уверенностью в успехе поручить часть учебных хлопот! Курсовая работа международное и национальное право и другие типы работ вы можете заказать по ссылке.

Источник: https://zaochnik-com.ru/blog/teoriya-magnitnogo-polya-i-interesnye-fakty-o-magnitnom-pole-zemli/

Магнитное поле. Силы

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: сила Ампера, сила Лоренца

В отличие от электрического поля, которое действует на любой заряд, магнитное поле действует только на движущиеся заряженные частицы. При этом оказывается, что сила зависит не только от величины, но и от направления скорости заряда.

Сила Лоренца

Сила, с которой магнитное поле действует на заряженную частицу, называется силой Лоренца. Опыт показывает, что вектор силы Лоренца находится следующим образом.

1. Абсолютная величина силы Лоренца равна:

(1)

Здесь — абсолютная величина заряда, — скорость заряда, — индукция магнитного поля, — угол между векторами и .

2. Сила Лоренца перпендикулярна обоим векторам и . Иными словами, вектор перпендикулярен плоскости, в которой лежат векторы скорости заряда и индукции магнитного поля.

Остаётся выяснить, в какое полупространство относительно данной плоскости направлена сила Лоренца.

3. Взаимное расположение векторов , и для положительного заряда показано на рис. 1.

Рис. 1. Сила Лоренца

Направление силы Лоренца определяется в данном случае по одному из двух альтернативных правил.

Правило часовой стрелки. Сила Лоренца направлена туда, глядя откуда кратчайший поворот вектора скорости частицы v к вектору магнитной индукции B виден против часовой стрелки.

Правило левой руки . Располагаем левую руку так, чтобы четыре пальца указывали направление скорости частицы, а линии поля входили в ладонь. Тогда оттопыренный большой палец укажет направление силы Лоренца.
Для отрицательного заряда направление силы Лоренца меняется на противоположное.

Всё вышеперечисленное является обобщением опытных фактов. Формула (1) позволяет связать размерность индукции магнитного поля с размерностями других физических величин:

Сила Ампера

Если металлический проводник с током поместить в магнитное поле, то на этот проводник со стороны магнитного поля будет действовать сила, которая называется силой Ампера.

Происхождение силы Ампера легко понять. Ведь ток в металле является направленным движением электронов, а на каждый электрон действует сила Лоренца. Все эти силы Лоренца, действующие на свободные электроны, имеют одинаковое направление и одинаковую величину; они складываются друг с другом и дают результирующую силу Ампера.

Направление силы Ампера определяется по тем же двум правилам, сформулированным выше.

Правило часовой стрелки . Сила Ампера направлена туда, глядя откуда кратчайший поворот тока к полю виден против часовой стрелки .

Правило левой руки . Располагаем левую руку так, чтобы четыре пальца указывали направление тока, а линии поля входили в ладонь. Тогда оттопыренный большой палец укажет направление силы Ампера .

ЭТО ИНТЕРЕСНО:  Полотенцесушитель электрический какой лучше

Взаимное расположение тока, поля и силы Ампера указано на рис. 2.

Рис. 2. Сила Ампера

На этом рисунке проводник имеет длину , а угол между направлениями тока и поля равен . Мы сейчас выведем выражение для абсолютной величины силы Ампера.

На каждый свободный электрон действует сила Лоренца:

где — скорость направленного движения свободных электронов в проводнике.

Пусть — число свободных электронов в данном проводнике, — их концентрация (число в единице объёма). Тогда:

где — объём проводника, — площадь его поперечного сечения. Получаем:

Мы не случайно выделили скобками четыре сомножителя. Ведь это есть не что иное, как сила тока: (вспомните выражение силы тока через скорость направленного движения свободных зарядов!). В результате приходим к окончательной формуле для силы Ампера:

(2)

Хорошую возможность поупражняться в нахождении направлений магнитного поля и силы Ампера даёт взаимодействие параллельных токов. Оказывается, два параллельных провода отталкиваются, если направления токов в них противоположны, и притягиваются, если направления токов совпадают (рис. 3).

Рис. 3. Взаимодействие параллельных токов

Обязательно убедитесь в этом самостоятельно! Делаем так. Сначала берём произвольную точку на первом проводе и определяем направление магнитного поля, создаваемого в этой точке вторым проводом (правило вам известно — см. предыдущий листок>). Ну а затем находим направление силы Ампера, действующей на первый провод со стороны магнитного поля второго провода.

Рамка с током в магнитном поле

В листках по термодинамике мы говорили о важности циклически работающих машин: они снабжают нас энергией. Понимание законов термодинамики позволило сконструировать тепловые двигатели, которые исправно служат нам и по сей день.

Понимание же законов электромагнетизма дало возможность создать циклическую машину другого типа — электродвигатель.

Мы рассмотрим один из элементов электродвигателя — рамку с током в магнитном поле. Разобравшись в её поведении, мы сможем уловить основную идею функционирования электродвигателя.

Пусть прямоугольная рамка может вращаться вокруг горизонтальной оси (рис. 4, слева). Рамка находится в вертикальном однородном магнитном поле . Ток течёт по рамке в направлении ; это направление показано соответствующими стрелками.

Рис. 4. Рамка с током в магнитном поле

Вектор называется вектором нормали; он перпендикулярен плоскости рамки и направлен туда, глядя откуда ток кажется циркулирующим против часовой стрелки. (Иными словами, вектор сонаправлен с вектором индукции магнитного поля, которое создаётся током в рамке.) Поворот рамки измеряется углом между векторами и .

Теперь определим направления сил Ампера, которые действуют на рамку со стороны магнитного поля. Эти силы расставлены на рисунке; вот вам ещё одно упражнение на правило часовой стрелки (левой руки) — обязательно проверьте правильность указанных направлений!

Силы и , приложенные к сторонам и , действуют вдоль оси вращения. Они лишь растягивают рамку и не вызывают её вращение.

Куда более интересны силы и , приложеные соответственно к сторонам и . Они лежат в горизонтальной плоскости и перпендикулярны оси вращения. Эти силы вращают рамку в направлении по часовой стрелке, если смотреть справа (рис. 4, правая часть). Вычислим момент этой пары сил относительно оси вращения рамки.

Пусть длина стороны равна . Тогда

Пусть длина стороны равна . Плечо силы , как видно из рис. 4 (справа) равно:

Таким же будет плечо силы . Отсюда получаем момент сил, вращающий рамку:

Теперь заметим, что — площадь рамки. Окончательно имеем:

(3)

В этой формуле площадь служит единственной геометрической характеристикой рамки.Это наводит на мысль, что только площадь рамки и существенна в выражении для вращающего момента. И действительно, можно доказать (разбивая рамку на бесконечно узкие полоски, неотличимые от прямоугольников), что формула (3) справедлива для рамки любой формы с площадью .

Как видно из формулы (3), максимальный вращающий момент равен:

Эта максимальная величина момента достигается при , то есть когда плоскость рамки параллельна магнитному полю.

Вращающий момент становится равным нулю при и . Оба этих положения по-своему интересны.

При плоскость рамки перпендикулярна полю, а векторы и направлены в разные стороны. Данное положение является положением неустойчивого равновенсия: стоит хоть немного шевельнуть рамку, как силы Ампера начнут её вращать в том же направлении, поворачивая вектор к вектору (убедитесь!).

При плоскость рамки также перпендикулярна полю, а векторы и сонаправлены. Это — положение устойчивого равновенсия: при отклонении рамки возникает вращающий момент, стремящийся вернуть рамку назад (убедитесь!). Начнутся колебания рамки, постепенно затухающие из-за трения.

В конце концов рамка остановится в положении ; в этом положении вектор индукции магнитного поля рамки сонаправлен с вектором индукции внешнего магнитного поля (вот почему при намагничивании вещества элементарные токи ориентируются так, что их поля направлены в сторону внешнего магнитного поля).

Полезное сопоставление: рамка занимает такое положение, что её положительная нормаль ориентируется в том же направлении, что и северный конец стрелки компаса, помещённой в это магнитное поле.

Таким образом, поведение рамки в магнитном поле становится ясным: если отклонить рамку от положения устойчивого равновесия и отпустить, то рамка будет совершать колебания.

С точки зрения совершения механической работы это не очень хорошо: если намотать нить на ось вращения и подвесить к нити груз, то груз будет то подниматься, то опускаться.

Но вот если исхитриться и заставить ток менять направление в нужные моменты, то вместо колебаний рамки начнётся её непрерывное вращение и, соответственно, непрерывный подъём подвешенного груза. Тогда-то и получится полноценный электродвигатель; идея с переменой направления тока реализуется с помощью коллектора и щёток.

Источник: https://ege-study.ru/ru/ege/materialy/fizika/magnitnoe-pole-sily/

Постоянное магнитное поле

Определение

Магнитное поле — одна из форм электромагнитного поля, которое действует только на движущиеся тела, которые имеют электрический заряд или намагниченные тела не зависимо от их движения.

Источниками этого поля являются постоянные электрические токи, движущиеся электрические заряды (телами и частицами), намагниченные тела, переменные электрические поля. Источниками постоянного магнитного поля являются постоянные токи.

Свойства магнитного поля

Во времена, когда изучение магнитных явлений только началось, исследователи особенное внимание уделяли тому, что существуют полюса в намагниченных брусках. В них магнитные свойства проявлялись особенно ярко. При этом четко было видно, что полюса магнита различны. Разноименные полюса притягивались, а одноименные отталкивались. Гильберт высказал идею о существовании «магнитных зарядов». Эти представление подержал и развил Кулон.

На основе опытов Кулона силовой характеристикой магнитного поля стала сила, с которой магнитное поле действует на магнитный заряд, равный единице. Кулон же обратил внимание на существенные различия между явлениями в электричестве и магнетизме.

Различие проявляется уже в том, что электрические заряды можно разделить и получить тела с избытком положительного или отрицательного заряда, тогда как невозможно разделить северный и южный полюса магнита и получить тело только с одним полюсом. Из невозможности деления магнита на исключительно «северный» или «южный» Кулон решил, что два эти вида зарядов неразрывны в каждой элементарной частице намагничивающего вещества.

Так, было признано, что каждая частица вещества — атом, молекула или их группа — есть нечто вроде микро магнита с двумя полюсами. Намагничивание тела при этом — процесс ориентации его элементарных магнитов под влиянием внешнего магнитного поля (аналог поляризации диэлектриков).

Взаимодействие токов реализуется посредством магнитных полей. Эрстед обнаружил, что магнитное поле возбуждается током и оказывает ориентирующее действие на магнитную стрелку. У Эрстеда проводник с током был расположен над магнитной стрелкой, которая могла вращаться. Когда ток шел в проводнике, стрелка поворачивалась перпендикулярно проволоке. Смена направления тока вызывало переориентацию стрелки.

Из опыта Эрстеда следовало, что магнитное поле имеет направление и должно характеризоваться векторной величиной. Эту величину назвали магнитной индукцией и обозначили: $\overrightarrow{B}.$ $\overrightarrow{B}$ аналогичен вектору напряженности для электрического поля ($\overrightarrow{E}$).

Аналогом вектора смещения $\overrightarrow{D}\ $для магнитного поля стал вектор $\overrightarrow{H}$- называемый вектором напряжённости магнитного поля.

ЭТО ИНТЕРЕСНО:  Что такое нулевой защитный проводник

Магнитное поле воздействует только на движущийся электрический заряд. Магнитное поле рождается движущимися электрическими зарядами.

Магнитное поле движущегося заряда. Магнитное поле витка с током. Принцип суперпозиции

Магнитное поле электрического заряда, который движется с постоянной скоростью, имеет вид:

\[\overrightarrow{B}=\frac{{\mu }_0}{4\pi }\frac{q\left[\overrightarrow{v}\overrightarrow{r}\right]}{r3}\left(1\right),\]

где ${\mu }_0=4\pi \cdot {10}{-7}\frac{Гн}{м}(в\ СИ)$ — магнитная постоянная, $\overrightarrow{v}$ — скорость движения заряда, $\overrightarrow{r}$ — радиус вектор, определяющий местоположение заряда, q — величина заряда, $\left[\overrightarrow{v}\overrightarrow{r}\right]$- векторное произведение.

Магнитная индукция элемента с током в системе СИ:

\[dB=\frac{{\mu }_0}{4\pi }\frac{Idlsin \vartheta}{r2}\left(2\right),\]

где$\ \overrightarrow{r}$- радиус-вектор, проведенный из элемента тока в рассматриваемую точку, $\overrightarrow{dl}$- элемент проводника с током (направление задано направление тока), $\vartheta$ — угол между $\overrightarrow{dl}$ и $\overrightarrow{r}$. Направление вектора $\overrightarrow{dB}$ — перпендикулярно к плоскости, в которой лежат $\overrightarrow{dl}$ и $\overrightarrow{r}$. Определяется правилом правого винта.

Для магнитного поля выполняется принцип суперпозиции:

\[\overrightarrow{B}=\sum{{\overrightarrow{B}}_i\left(3\right),}\]

где ${\overrightarrow{B}}_i$ — отдельные поля, которые порождаются движущимися зарядами, $\overrightarrow{B}$ — суммарная индукция магнитного поля.

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

Пример 1

Задание: Найдите отношение сил магнитного и кулоновского взаимодействия двух электронов, которые движутся с одинаковыми скоростями $v$ параллельно. Расстояние между частицами постоянно.

Решение:

Будем считать, что один электрон поле создает (и магнитное и электрическое), а другой в нем движется. Тогда на электрон, который движется в поле, действует со стороны магнитного поля сила равная (система СИ):

\[\overrightarrow{F_m}=q\left[\overrightarrow{v}\overrightarrow{B}\right]\left(1.1\right).\]

Поле, которое создает второй движущийся электрон равно:

\[\overrightarrow{B}=\frac{{\mu }_0}{4\pi }\frac{q\left[\overrightarrow{v}\overrightarrow{r}\right]}{r3}\left(1.2\right).\]

Пусть расстояние между электронами равно $a=r\ (постоянно)$. Используем алгебраическое свойство векторного произведения (тождество Лагража ($\left[\overrightarrow{a}\left[\overrightarrow{b}\overrightarrow{c}\right]\right]=\overrightarrow{b}\left(\overrightarrow{a}\overrightarrow{c}\right)-\overrightarrow{c}\left(\overrightarrow{a}\overrightarrow{b}\right)$))

\[{\overrightarrow{F}}_m=\frac{{\mu }_0}{4\pi }\frac{q2}{a3}\left[\overrightarrow{v}\left[\overrightarrow{v}\overrightarrow{a}\right]\right]=\left(\overrightarrow{v}\left(\overrightarrow{v}\overrightarrow{a}\right)-\overrightarrow{a}\left(\overrightarrow{v}\overrightarrow{v}\right)\right)=-\frac{{\mu }_0}{4\pi }\frac{q2\overrightarrow{a}v2}{a3}\ ,\]

$\overrightarrow{v}\left(\overrightarrow{v}\overrightarrow{a}\right)=0$, так как $\overrightarrow{v\bot }\overrightarrow{a}$.

Модуль силы $F_m=\frac{{\mu }_0}{4\pi }\frac{q2v2}{a2},\ $где $q=q_e=1,6\cdot 10{-19}Кл$.

Модуль силы Кулона, которая действует на электрон, в поле равна:

Источник: https://spravochnick.ru/fizika/postoyannoe_magnitnoe_pole/

Представление о магнитном поле

Мы все знаем, что такое постоянные магниты. Магниты – это металлические тела, притягивающиеся к другим магнитам и к некоторым металлам. То, что располагается вокруг магнита и взаимодействует с окружающими предметами (притягивает или отталкивает некоторые из них), называется магнитным полем. Источником любого магнитного поля являются движущиеся заряженные частицы. А направленное движение заряженных частиц называется электрическим током.

То есть, любое магнитное поле вызывается исключительно электрическим током.

За направление электрического тока принимают направление движения положительно заряженных частиц. Если же движутся отрицательные заряды, то направление тока считается обратным движению таких зарядов. Представьте себе, что по кольцевой трубе течет вода. Но мы будем считать, что некий «ток» при этом движется в противоположном направлении.

Электрический ток обозначается буквой I.

В металлах ток образуется движением электронов – отрицательно заряженных частиц. На рисунке ниже, электроны движутся по проводнику справа налево. Но считается, что электрический ток направлен слева направо. Это произошло потому, что когда начали изучение электрические явления, не было известно, какими именно носителями чаще всего переносится ток. Если мы посмотрим на этот проводник с левой стороны, так, чтобы ток шел «от нас», то магнитное поле этого тока будет направлено вокруг него по часовой стрелке. Если рядом с этим проводником расположить компас, то его стрелка развернется перпендикулярно проводнику, параллельно «силовым линиям магнитного поля» — параллельно черной кольцевой стрелке на рисунке. Если мы возьмем шарик, имеющий положительный заряд (имеющий дефицит электронов) и бросим его вперед, то вокруг этого шарика появится точно такое же кольцевое магнитное поле, закручивающееся вокруг него по часовой стрелке. Ведь здесь тоже имеет место направленное движение заряда. А направленное движение зарядов есть электрический ток. Если есть ток, вокруг него должно быть магнитное поле. Движущийся заряд (или множество зарядов – в случае электрического тока в проводнике) создает вокруг себя «тоннель» из магнитного поля. Стенки этого «тоннеля» «плотнее» вблизи движущего заряда. Чем дальше от движущегося заряда, тем слабее напряженность («сила») создаваемого им магнитного поля. Тем слабее реагирует на это поле стрелка компаса. Закономерность распределение напряженности магнитного поля вокруг его источника такая же, как закономерность распределения электрического поля вокруг заряженного тела – она обратно пропорциональна квадрату расстояния до источника поля. Если положительно заряженный шарик перемещается по кругу, то кольца магнитных полей, образующихся вокруг него по мере его движения, суммируются, и мы получим магнитное поле, направленное перпендикулярно плоскости, в которой перемещается заряд: Магнитный «тоннель» вокруг заряда оказывается свернутым в кольцо и напоминает по форме тор (бублик). Такой же эффект получается, если свернуть в кольцо проводник с током. Проводник с током, свернутый в многовитковую катушку называется электромагнитом. Вокруг катушки складываются магнитные поля движущихся в ней заряженных частиц — электронов. А если заряженный шарик вращать вокруг его оси, то у него появится магнитное поле, как у Земли, направленное вдоль оси вращения. В данном случае током, вызывающим появление магнитного поля, является круговое движение заряда вокруг оси шарика – круговой электрический ток. Здесь, по сути, происходит то же самое, что и при движении шарика по кольцевой орбите. Только радиус этой орбиты уменьшен до радиуса самого шарика. Все сказанное выше справедливо и для шарика заряженного отрицательно, но его магнитное поле будет направлено в противоположную сторону. Данный эффект был обнаружен в опытах Роуланда и Эйхенвальда. Эти господа регистрировали магнитные поля вблизи вращающихся заряженных дисков: рядом с этими дисками начинала отклоняться стрелка компаса. Направления магнитных полей в зависимости от знака заряда дисков и направления их вращения, показаны на рисунке: При вращении незаряженного диска, магнитные поля не обнаруживались. Не было магнитных полей и вблизи неподвижных заряженных дисков.  

Модель магнитного поля движущегося заряда

Чтобы запомнить направление магнитного поля движущегося положительного заряда, мы представим себя на его месте. Поднимем правую руку вверх, затем укажем ею направо, затем опустим ее вниз, затем укажем влево и вернем руку в исходное положение – вверх. Затем повторим это движение. Наша рука описывает круги по часовой стрелке. Теперь начнем движение вперед, продолжая вращать рукой.

Движение нашего тела – аналог движения положительного заряда, а вращение руки по часовой стрелке – аналог магнитного поля заряда. Теперь представьте себе, что вокруг нас находится тонкая и прочная эластичная паутина, похожая на струны пространства, которые мы рисовали, создавая модель электрического поля.

Когда мы движемся сквозь эту трехмерную «паутину», из-за вращения руки, она, деформируясь, смещается по часовой стрелке, образуя подобие спирали, словно бы наматываясь в катушку вокруг заряда. Сзади, за нами, «паутина» восстанавливает свою правильную структуру. Примерно так можно представлять себе магнитное поле положительного заряда, движущегося прямо.

А теперь попробуйте двигаться не прямо вперед, а по кругу, например, поворачивая при ходьбе налево, при этом вращая рукой по часовой стрелке. Представьте себе, что вы движетесь через нечто, напоминающее желе. Из-за вращения вашей руки, внутри круга, по которому вы движетесь, «желе» будет смещаться вверх, образуя горб над центром круга. А под центром круга, образуется впадина из-за того, что часть желе сместилось вверх.

Так можно представлять себе формирование северного (горб сверху) и южного (впадина снизу) полюсов при движении заряда по кольцу или его вращения. Если при ходьбе вы будете поворачивать направо, то «горб» (северный полюс) сформируется снизу. Аналогично можно сформировать представление о магнитном поле движущегося отрицательного заряда. Только вращать рукой нужно в противоположную сторону – против часовой стрелки. Соответственно, магнитное поле будет направлено в противоположную сторону.

Просто каждый раз следите за тем, в какой сторону ваша рука выталкивает «желе». Такая модель наглядно демонстрирует то, почему северный полюс одного магнита притягивается к южному полюсу другого магнита: «горб» одного из магнитов втягивается во «впадину» второго магнита. И еще эта модель показывает, почему не существуют отдельных северных и южных полюсов магнитов, как бы мы их не разрезали – магнитное поле представляет собой вихревую (замкнутую) «деформацию пространства» вокруг траектории движущегося заряда.  

ЭТО ИНТЕРЕСНО:  Рэс что это такое

Спин

У электрона было обнаружено магнитное поле, такое, какое у него должно быть в том случае, если бы он был шариком, вращающимся вокруг своей оси. Это магнитное поле назвали спином (от английского to spin — вращаться). Кроме того, у электрона существует еще и орбитальный магнитный момент. Ведь электрон не только «вращается», но движется по орбите вокруг ядра атома.

А движение заряженного тела порождает магнитное поле. Так как электрон заряжен отрицательно, магнитное поле, вызванное его движением по орбите, будет выглядеть так: Если направление магнитного поля, вызванного движением электрона по орбите, совпадает с направлением магнитного поля самого электрона (его спином), эти поля складываются и усиливаются.

Если же эти магнитные поля направлены в разные стороны, они вычитаются и ослабляют друг друга. Кроме того, могут суммироваться или вычитаться друг из друга магнитные поля других электронов атома. Этим объясняется наличие или отсутствие магнетизма (реакции на внешнее магнитное поле или наличие собственного магнитного поля) некоторых веществ. Эта статья — отрывок из книги об азах химии.

Сама книга здесь:

sites.google.com/site/kontrudar13/himia

UPD: Материал предназначен, в первую очередь, для школьников средних классов. Возможно, Хабр не место для подобных вещей, Но где место? Нет его.

Источник: https://habr.com/ru/post/444790/

Лечебное применение электрического и магнитного полей, УВЧ-терапия, магнитотерапия

Магнитные и электромагнитные поля, то есть электромагнитное излучение, присутствуют везде. Электромагнитные поля оказывают всестороннее влияние на живые организмы. Механизм этого влияния весьма разнообразен и зависит от многих факторов, что может использоваться в различных практических целях.

Физическая сущность действия электромагнитного поля на организм человека заключается в том, что оно оказывает влияние на движущиеся в теле электрически заряженные частицы, воздействуя, таким образом, на физико-химические и биохимические процессы.

Современная медицина с успехом применяет электромагнитное излучение для лечения и профилактики различных заболеваний.

УВЧ-терапия

Метод электролечения, основанный на воздействии на организм больного преимущественно ультравысокочастотного электромагнитного поля.

УВЧ оказывает противовоспалительное действие за счет улучшения крово- и лимфообращения, дегидратации тканей и уменьшения экссудации, активирует функции соединительной ткани, стимулирует процессы клеточной пролиферации, что создает возможность ограничивать воспалительный очаг плотной соединительной капсулой.

УВЧ оказывает антиспастическое действие на гладкую мускулатуру желудка, кишечника, желчного пузыря, ускоряет регенерацию нервной ткани, усиливает проводимость импульсов по нервному волокну, понижает чувствительность концевых нервных рецепторов, следовательно, способствует обезболиванию, уменьшает тонус капилляров, понижает артериальное давление, вызывает брадикардию.

Этот метод лечения применяют при различных острых и хронических воспалительных процессах внутренних органов (бронхиты, холециститы, пневмонии), опорно-двигательного аппарата, уха, горла, носа (ангины, отиты), периферической нервной системы (невриты), женской половой сферы, дистрофических процессах и острых нагноениях (фурункулы, карбункулы, абсцессы, флегмоны).

Показания:

  • острые и подострые воспалительные процессы, в том числе и гнойные, если есть пути оттока гноя (заболевания органов дыхания, желудочно-кишечного тракта, мочеполовой системы, опорно-двигательного аппарата);
  • травмы нервной системы;
  • невралгии;
  • болезнь Рейно;
  • облитерирующие заболевания сосудов;
  • обморожения.

Противопоказания:

  • наличие металлических инородных тел в зоне воздействия;
  • отсутствие путей оттока гноя;
  • выраженная гипотензия;
  • злокачественные новообразования;
  • сердечная недостаточность 3 степени;
  • инфаркт миокарда.

Магнитотерапия

Это сравнительно новое направление физиотерапии, основанное на воздействии переменного магнитного поля низкой частоты на весь организм или его часть. Ткани организма под влиянием магнитного поля не намагничиваются, однако многим составным элементам тканей (например, воде, форменным элементам крови) могут в магнитном поле передаваться магнитные свойства.

Магнитотерапия имеет широкий спектр действия и отсутствие противопоказаний. Это объясняются тем, что магнитотерапевтические методы действуют на организм на субмолекулярном, молекулярном и субклеточном уровнях.

Очень чувствительна к магнитному полю сердечно-сосудистая система и при лечении заболеваний сердца улучшается коронарное кровообращение, снижается потребность миокарда в кислороде, повышается устойчивость организма к физической нагрузке.

При воздействии на сосуды достигается их расширение, в крови понижается вязкость, снижается способность тромбоцитов образовывать тромбы в сосудах, улучшается местное кровообращение и доставка к тканям и органам кислорода. Таким образом, магнитные поля оказывают противовоспалительное, противоотечное, седативное, болеутоляющее действие.        

цель использования магнитотерапии  — борьба с болью.  Кроме того у пациентов облегчается боль от тяжелых травм или болей, связанными с артритом. Успешно применяется магнитотерапия для рассасывания гематом и снятия воспалений. Магнитотерапия является универсальным и безопасным средством, ускоряющим регенерирующие процессы в организме. Магнитотерапия хорошо переносят ослабленные больные и больных пожилого возраста.

Магнитотерапевтические эффекты:

  • улучшение общего самочувствия, сна;
  • ослабление либо исчезновение боли;
  • улучшение показателей крови;
  • уменьшение лимфатических узлов;
  • увеличение подвижности суставов;
  • снижение артериального давления;
  • восстановление функции периферических нервов;
  • рассасывание инфильтративной ткани;
  • нормализация температуры;
  • снижение уровня сахара крови;
  • безболезненное очищение мочевыводящих путей от конкрементов.

Показания к применению:

  • заболевания сердечно-сосудистой системы;
  • заболевания органов дыхания;
  • заболевания желудочно-кишечного тракта;
  • заболевания мочеполовой системы;
  • заболевания опорно-двигательного аппарата;
  • заболевания мягких тканей;
  • гнойно-воспалительные заболевания;
  • заболевания нервной системы;
  • токсикомания, алкоголизм.

Источник: http://www.pomc.ru/extended_care/physiotherapy/magnetic_fields

Бегущее импульсное магнитное поле при заболеваниях суставов

— Статьи —

Бегущее импульсное магнитное поле (сокращенно БИМП) – один из видов импульсных магнитных полей. Оно очень изменчиво. Параметры этого поля изменяются одновременно по трем признакам: в пространстве (силовые линии меняют свое направление): во времени (силовые линии то прерываются, то возникают опять в виде магнитных импульсов); по плоскости излучателя (импульсы то включаются, то выключаются в магнитном индукторе — они бегут последовательно по индукторам).

Для чего это нужно?

Чем более изменчиво магнитное поле, используемое в целях магнитотерапии, тем больший эффект дает лечение. Магнитные возмущения и создаваемые ими завихрения сильнее действуют на химико-физические свойства клеток и межклеточной жидкости, чем неизменное воздействие.

Реакция организма на изменчивое воздействие наступа- ет значительно быстрее. Кроме того, к такому воздействию клеткам невозможно привыкнуть, и они отзываются на него даже через продолжительное время так же, как и в начале воздействия.

То есть, с каждой повторной процедурой реакция на лечение не снижается, как в случае с другими, менее изменчивыми видами магнитного поля.

Насколько это вредно? Используемая в настоящее время для медицинских целей частота импульсов БИМП попадает в диапазон биологически активных частот от 4 до 16 Гц и соответствует собственному ритму нашего организма. Поэтому этот вид поля не наносит вреда в дозированном применении. При этом оно способствует восстановлению нормального кровотока, что положительно сказывается при лечении многих заболеваний.

Как бегущее импульсное магнитное поле может помочь при артрозах и артритах?

Под воздействием бегущего импульсного магнитного поля в области больного сустава восстанавливается нормальное кровообращение. Это дает приток питательных и строительных веществ, необходимых хрящу, а также своевременное выведение продуктов воспаления и распада.

В результате снимается процесс воспаления, рассасывается отечность, уменьшается боль.

Нормализация обмена веществ в околосуставных тканях и пораженном суставе оказывает на суставный хрящ регенерирующее действие, что позитивно отражается на функции сустава и позволяет замедлить дальнейшие разрушительные процессы.

Дозировки и сроки магнитотерапии при суставных патологиях

Воздействие оказывается непосредственно на область больного сустава. Если позволяет конструкция источника магнитного поля, можно «обмотать» сустав вокруг, что повышает эффектив- ность процедуры. При заболевании смежных суставов, лечение их может проводиться одновременно.

Процедуры проводятся ежедневно, 1-2 раза в день. Если процедура проводится один раз в день, желательно проводить ее вечером (перед сном). Время одной процедуры 15-20 минут, суммарное время воздействия за день – не более 30 минут. Курс лечения – 18 дней.

За один курс (18 дней) лечить можно не более двух суставов.

Минимальный перерыв между курсами — 10 дней, желательный — 30 дней.

Необходимое количество лечебных курсов — 4 курса в год.

Необходимое количество поддерживающих курсов (в состоянии ремиссии) – не менее 2 курсов в год.

Источник: https://almagia.com/ru/articles/1584/

Понравилась статья? Поделиться с друзьями:
220 вольт
Что такое петля фаза ноль простым языком

Закрыть
Для любых предложений по сайту: [email protected]