Осциллограф что это такое

Для чего нужен осциллограф

осциллограф что это такое

Для тестирования электронных схем применяется много приборов, один из которых — осциллограф. Им пользуются и начинающие электронщики, и сервисные центры электроники, разработчики техники. Поэтому важно разобраться, зачем нужен осциллограф и как он классифицируется.

Для чего нужен осциллограф?

Осциллограф — это прибор для измерения амплитудных и временных параметров электрического сигнала. Современные модели устройств способны вычислять параметры сигнала гигагерцевой частоты. С помощью проводов его подключают к проблемному устройству, а затем отслеживают изменение важных характеристик. Если говорить в целом, для чего нужен цифровой или другой осциллограф, то можно выделить следующие пункты:

  • определение временных параметров и величины сигнального напряжения;
  • вычисление сигнальной частоты;
  • наблюдение сдвига фаз, происходящего при прохождении разных участков цепи;
  • выяснение постоянной и переменной сигнальных составляющих;
  • выявление сигнального искажения, создаваемое одним из участков цепи;
  • выяснение соотношения сигнала к шуму;
  • определение вида шума (стационарный или нет), его изменений во времени.

По форме сигнала, определенной с помощью измерительного прибора, специалист сможет установить процессы, происходящие в электрической цепи. С помощью измерительного оборудования можно отслеживать сигналы в разных точках схемы, наблюдать их соотношение между собой. К примеру, на входе и выходе усилителя. Можно изучить сигнальные данные на входе и выходе, узнать о форме искажений, вносимых усилителем, оценить изменение амплитуды, задержку по времени.

Как измерительное оборудование работает?

В осциллограф вставляется щуп, который затем соединяется со схемой или входом электрического прибора, напряжение которого необходимо узнать. Если в нем присутствует ток, то он обязательно пойдет через щуп. Попадая в устройство, он обрабатывается. Измерительное оборудование вычисляет его форму, показатели напряжения, частоту, уровень шума и иные параметры, а затем выводит всё на экран.

Если в точке подключения щупа тока нет, то на мониторе будет просто ровная линия. Если присутствует постоянное напряжение, появится линия, направленная вверх или вниз. Если напряжение колеблется, оборудование покажет форму и колебания, дав оператору понять, что происходит внутри схемы и определить проблемный участок электрической цепи.

Какие они бывают?

После того, как мы выяснили зачем нужен аналоговый и любой другой осциллограф, можно перейти к его классификации. Существует 6 основных типов измерительных приборов:

  1. Аналоговые. Считаются классическими моделями измерительных устройств. Аналоговый осциллограф — это прибор для измерения средних сигналов. Нижний предел частоты — 10 Гц. Цена такого оборудования намного ниже, чем цифрового, потому оно до сих пор популярно среди начинающих электронщиков. Главный плюс аналоговых моделей — наименьшее искажение наблюдаемого сигнала. В остальном они сильно проигрывают цифровой техники. Основные узлы устройства:   a. делитель входного сигнала;   b. схема синхронизации и отклонения горизонтальной плоскости;   c. лучевая трубка;

      d. блок питания.

  2. Цифровые запоминающие. Устройства предлагают больше возможностей по проведению исследований и измерений, поэтому их цена намного выше, чем аналоговых моделей. Анализирующие способности — главное преимущество запоминающих приборов. Задав определенные настройки, можно заставить оборудование записывать данные в цифровом формате сразу после нормализации. Изображение сигнальных данных более устойчивое, а итоговый результат пользователь может отредактировать путем нанесения меток или масштабированием. Примеры цифровых запоминающих осциллографов: TBS1052B Tektronix, TBS1152B-EDU Tektronix, R&S RTC1000. Основные компоненты прибора:   a. делитель входного сигнала;   b. усилитель нормализации;

      c. АЦП-преобразователь;

      d. устройства вывода и ввода информации;

      e. запоминающее устройство.

  3. Цифровые люминофорные. Приборы этого типа работают на цифровом люминофоре и считаются самыми дорогими среди всех типов осциллографов. Они способны имитировать изменение интенсивности выводимых данных. Это особенность упрощает диагностику отклонений в импульсных блоках. Примеры люминофорных осциллографов: Tektronix MSO DPO2000B, Tektronix DPO70804C, DPO72304SX Tektronix.
  4. Цифровые стробоскопические. В этих моделях используется эффект последовательного сигнального стробирования. Используются они для анализа высокочастотных повторяющихся сигналов, частота которых превышает частоту дискретизации устройства. Они осуществляют выборку множества сигнальных точек за несколько последовательных периодов, а затем воссоздают исходную форму волны. Рабочая частота оборудования этого типа превышает 50 Гц. Одной из популярных моделей стробоскопических осциллографов является DSA8300 Tektronix. Отличительная особенность устройства — широкий выбор оптических, электрических модулей для испытаний.
  5. Портативные. Измерительные технологии быстро развиваются, поэтому появилось компактное оборудование для проведения исследований сигналов. Плюс таких устройств заключается в низком потреблении электроэнергии и небольших габаритах. Портативное оборудование часто используют в своей работе электронщики. Примеры малогабаритной измерительной техники: серия R&S RTH Scope Rider, серия R&S (HAMEG) HMO Compact.
  6. Комбинированные. В эти приборы встроены анализаторы спектра, поэтому они способны не только собирать информацию о поступающем сигнале, но и определить количество гармоник вместе с уровнем. Примеры комбинированного оборудования: MDO3024 Tektronix, MDO3104 Tektronix, MDO4054C Tektronix.

Осциллографы незаменимы при измерении временных и амплитудных параметров электрического сигнала. Современные модели устройств также способны проводить спектральный анализ.

Источник: https://sernia.ru/training/zachem-nuzhen-oscillograf/

Зачем нужен осциллограф : просто о сложном вопросе

осциллограф что это такое

Возможно, вы открываете свой сервисный центр по ремонту оборудования. Может быть, вы радиолюбитель, желающий собрать в своем домашнем инструментарии все необходимые для комфортной работы приборы. Или же вы оснащаете исследовательскую лабораторию для высшего учебного заведения, а может просто смотрите ассортимент измерительных приборов (кстати, отличный ассортимент осцилографов), которые сейчас можно подобрать на любой вкус в магазине электроники.

И вот, в процессе поиска вы натыкаетесь на осциллограф — прибор, очень дорого стоящий и совершенно непонятно что делающий. Попытаемся разобраться, каким образом он работает, зачем нужен и где будет полезен.

Как работает осциллограф

Осциллограф — это прибор, который визуально показывает, есть ли напряжение в какой-то точке электрической цепи. Возьмем для примера современную цифровую модель.

Процедура использования такая — в осциллограф вставляется щуп (экранированный отрезок провода) который соединяется с местом, в котором мы хотим посмотреть напряжение. Если оно там есть — ток (очень маленький) начинает идти через осциллограф.

Попадая в процессор устройства, он обрабатывается (вычисляются его форма, значение напряжения, частота и другие параметры), и это всё выводится на экран.

Если в точке, к которой мы приставили щуп, ничего нет — на экране будет ровная линия. Если есть постоянное напряжение — линия съедет вверх (или вниз) на то значение в вольтах, сколько и есть в цепи. И самое главное — если напряжение колеблется(переменной частоты), осциллограф очень детально покажет нам его форму и колебания, дав полное представление о том, что же происходит внутри схемы.

Зачем это нужно

Весь окружающий нас мир состоит из колебаний. Это свет,радиоволны, тепловое излучение, механическое движение объектов.Хорошим примером для описания работы осциллографа нам послужат звуковые частоты, которые мы слышим, например, когда слушаем музыку.

Записанный звук воспроизводят динамики. Они преобразуют электрический сигнал в звуковой. А этот электричекий сигнал в них посылает УНЧ (усилитель низких частот). И вот, мы хотим послушать музыку, включаем усилитель, из динамиков идет звук весьма посредственного качества. Хрипит, свистит, и вообще звучит как-то не так. В чем же дело? Звук нас совсем не устраивает, мы хотим разобраться.

Открываем корпус усилителя, видим его печатную плату. А что дальше? Неисправности, как таковой, нет, усилитель рабочий, все детали на месте. Внешне оценить правильность его работы мы никак не можем — колебания ведь электрические, внешне их никак не увидишь. Тут и приходит на помощь осциллограф.

Мы не сдаемся, берем в руки щуп и начинаем исследовать сигнал, начиная с места, откуда он поступает. Подаем определенную частоту с генератора (например, с телефона или компьютера). Смотрим на вход усилителя — ровная синусоида. Идем дальше по схеме. Проверяем все цепи (предусилитель, корректировочные элементы) — везде сигнал такой же.

Добираемся до оконечного, мощного, каскада. Смотрим, что он выдает — а там ужас! Никакой синусоиды, куча помех, сигнал треугольный, вообще не то, что мы хотели увидеть. Теперь всё понятно — именно этот каскад портит звук. Дальше можно думать над причинами.

Возможно, не хватает мощности блока питания (на осциллографе выглядит, как просадки напряжения, искаженная, неровная форма сигнала), возможно, где-то в плате входят искажения, может быть не совсем рабочий какой-то из каналов. Теперь ясно, где искать проблему и как ее решить.

Без осциллографа мы бы этого никак не узнали.

Где осциллограф будет полезен

На самом деле, применений невероятно много,ведь работа очень многих важных цепей основана именно на разных сигналах.

Начиная с диагностики блоков питания и преобразователей (например, там, где должен быть прямоугольный сигнал — он треугольный, пилообразный или его вообще нет), ремонтом мобильных устройств, компьютеров, радиоуправляемых игрушек -, заканчивая проектировкой нового оборудования, тестированием готовых изделий (у многих осциллографов для этого есть специальные функции), и даже исследованием природных явлений и наглядным наблюдением за ними. Очень удобно сравнивать несколько сигналов — если они должны быть одинаковыми, или наоборот, должны чередоваться, всё это можно проверить.

Почему осциллограф так дорого стоит

Потому что от него требуется точность и быстродействие. Он должен показать именно такую форму сигнала, какая есть на самом деле. Для этого ему требуется считывать этот сигнал миллионы раз в секунду, при этом считывать с точностью в доли процента.

Чтобы работать так быстро и точно, нужен мощный процессор и качественные детали обвязки. Нужна огромная техническая работа по проектированию самого осциллографа, затем по написанию к нему программного обеспечения, затем качественная его сборка.

Не считая того, что количество деталей в нем сложно представить.

Делая выводы

В любой схеме, где генерируются какие-то сигнал (а это практически везде), его можно посмотреть осциллографом. Если его можно посмотреть, значит можно понять, правильный он или нет, есть он вообще или отсутствует, какой он формы и насколько это критично для конкретного устройства. После того, как с осциллографом начинаешь дружить, без него очень сложно представить себе работу с электронным оборудованием. Это первый и самый главный помощник в каждой качественной мастерской.

*

Источник: https://www.mv.org.ua/news/171344-prosto_o_slozhnom_zachem_nuzhen_oscillograf.html

Осциллограф. Виды и устройство. Работа и применение. Особенности

осциллограф что это такое

Осциллограф представляет прибор, используемый для исследования временных и амплитудных параметров электрического сигнала, который подается на его вход, или непосредственно на экране, или записываемого на фотоленте. На сегодняшний день это один из самых распространенных типов контрольно-измерительных приборов, который наряду с мультиметрами позволяет производить производственные и научные исследования.

На сегодняшний день промышленность не стоит на месте. Создаются современные приборы, которые позволяют значительно сокращать время исследований и разработок. Они обладают значительным набором измерительных приложений, емкостным сенсорным дисплеем, глубокой памятью и высочайшей скоростью обновления сигналов на экране.

Всего имеется несколько типов приборов, которые различаются по характеристикам:

  • Устройства смешанных сигналов.

По количеству лучей осциллограф может быть:

  • Однолучевой.
  • Двулучевой и так далее.

Число лучей может быть 16 и более (n-лучевой прибор имеет n сигнальных входов, в том числе может отображать на экране одновременно n графиков входных сигналов).

Приборы также классифицируются по принципу действия:

  • Электронный: аналоговый и цифровой.
  • Электромеханический: электродинамический, выпрямительный, электростатический, термоэлектрический, электромагнитный, магнитоэлектрический.

По развертке их можно поделить:

  • Специальный.
  • Запоминающий.
  • Стробоскопический.
  • Скоростной.
  • Универсальный.

Имеются также приборы, которые совместимы с иными измерительными устройствами. Это может быть не только автономное устройство, но и приставка, к примеру, компьютер, карта расширения или вовсе подключение к внешнему порту.

Устройство

Конструкция аналоговых устройств базируется на применении систем аналоговой горизонтальной развертки и электронно-лучевых трубок. Одним из главных блоков данных приборов являются генераторы линейно меняющегося напряжения пилообразной формы.

Аналоговый осциллографимеет:

  • Отклонение луча на экране определяется напряжение пластин. Трубки выделяются большим диапазоном частоты. Горизонтальная развертка функционирует от напряжения горизонтальных пластин по линейной зависимости. Верхняя граница частоты определяется усилителем и емкостью пластин. Нижний предел соответствует 10 герцам.
  • Для визуализации характеристик и формы в аналогово-цифровых приборах исследуемого сигнала используются системы аналоговой горизонтальной развертки, электронно-лучевые трубки, в том числе генераторы линейно изменяющегося напряжения. К тому же в конструкции приборов имеются встроенные запоминающие модули, которые используются для хранения изображения.
  • Запоминающие цифровые приборы применяют высокоскоростную оцифровку аналоговых сигналов, обеспечивают их хранение и выводят на жидкокристаллический индикатор, который применяется вместо электронно-лучевой трубки. Цифровой осциллограф имеет преобразователь аналогового сигнала, усилитель, делитель, блок управления, память и блок выведения на ЖК панель.
  • Устройства смешанных сигналов быстро оцифровывают аналоговые сигналы, в том числе имеют функцию ввода цифровых последовательностей. Вся необходимая информация сохраняется в запоминающий модуль и выводится на жидкокристаллический монитор при необходимости.

Принцип действия

Аналоговые устройства для создания изображения на экране применяют электронно-лучевую трубку. В ней напряжение, которое подается на оси X и Y, заставляет точку передвигаться по экрану. На горизонтали можно наблюдать зависимость от времени, тогда как по вертикали идет отображение пропорциональное входному сигналу. В целом же сигнал усиливается и направляется на электроды, которые отклоняют по оси Y электронно-лучевой трубки с применением аналоговой технологии.

Цифровойосциллограф работает несколько по-другому:

  • Выполняется модификация входящего аналогового сигнала в цифровую форму.
  • Затем происходит его сохранение. Скорость сохранения зависит от управляющего устройства. Верхняя граница определяется скоростью преобразователя, при этом у нижней границы нет ограничений.
  • Преобразование сигнала в цифровой код позволяет повысить устойчивость отображения, сделать масштаб и растяжку проще, сохранить данные в память.
  • Использование дисплея вместо электронной трубки дает возможность отображать любые данные, в том числе выполнять управление прибором. У дорогостоящих приборов установлены цветные экраны, благодаря чему они дают возможность выделять цветом различные места, различать курсоры и сигналы иных каналов.
  • Синхронизацию можно наблюдать прямо перед включением развертки. Используемые процессоры обработки сигнала позволяют обрабатывать сигнал при помощи анализа преобразованием Фурье.
  • Информация в цифровом виде дает возможность записать экран с итогами измерения в память, в том числе распечатать на принтере. Большинство приборов имеют накопители, чтобы можно было записать изображения в архив и в дальнейшем произвести их обработку.

Осциллографпредставляет измерительный прибор, при помощи него можно:

  • Определить значения напряжения сигнала (амплитуду) и временные параметры.
  • Измерив временные характеристики сигнала, удастся определить его частоту.
  • Наблюдать сдвиг фаз, происходящий при прохождении разных участков цепи.
  • Выяснить переменную (AC) и постоянную (DC), которые составляют сигнал.
  • Наблюдать искажение сигнала, который вносит определенный участок цепи.
  • Выяснить соотношение сигнал/шум, определить стационарность шума или его изменение по времени.
  • Понять процессы, которые происходят в электрической цепи.
  • Выяснить частоту колебаний и так далее.

Эти устройства преимущественно применяются в электронике и радиотехнике. Особенно важным элементом прибор используется в электромеханических сферах производства. Данное устройство выступает в качестве фиксирующего прибора, который наглядно отображает все колебания электрического тока, происходящие в определенном электрическом механизме.

С помощью прибора можно найти помехи, а также искажения прохождения электрического импульса в самых разных узлах схемы.

Применение в диагностике и ремонте автомобилей

Применяются эти приборы и в других областях. Так они часто используются для определения неисправностей в системе исполнительных механизмов и иной диагностике. При помощи них даже можно диагностировать механические неисправности двигателя.

ЭТО ИНТЕРЕСНО:  Что такое эффект холла

К примеру, осциллограф способен:

  • Выявить неисправный катализатор.
  • Определить соответствие установки задающего шкива коленвала по отношению к датчику положения коленчатого вала.
  • Выявить сильный подсос воздуха.
  • Наблюдать сигналы с датчиков системы, отслеживать их изменение.
  • Считывать коды неисправностей, сохраненные системой.
  • Указать идентификационные данные системы, ЭБУ.
  • Выполнить проверку работу исполнительных механизмов и так далее.

Естественно, что такой прибор должен иметь логический анализатор, специальное программное обеспечение и уметь выполнять дешифровку протоколов.

На рынке представлено множество самых разных моделей. Поэтому перед покупкой следует определиться:

  • Следует узнать, где будет применяться прибор?
  • Какова амплитуда измеряемых сигналов?
  • Сигналы в скольких точках схемы будет нужно измерять одновременно?
  • Необходимость измерения одиночных и периодических сигналов?
  • Необходимость сигналов в частотной области, функции быстрого преобразования Фурье и так далее?

При выборе следует обратить внимание на следующие параметры:

  • Количество каналов. Они будут влиять на число отображаемых независимых сигналов на дисплее. Их одновременное наличие позволит наблюдать за несколькими графиками, проводить их сравнение и анализировать. Для работы с простой техникой хватит 2-4 каналов. Наиболее продвинутыми являются приборы с функцией логического анализатора и 16 каналами.
  • Частота дискретизации будет влиять на число выборок сигнала в секунду, то есть на качество разрешения изображения на экране. Большее количество точек сигнала позволит построить более точное изображение. Данный параметр важен при измерении переходных и однократных процессов.
  • Тип питания. При работе с прибором на выезде или вдали от сети лучше покупать модель с аккумулятором. В остальных случаях лучше покупать измерительные приборы, работающие от сети.
  • Полоса пропускания. Следует учесть, что полоса пропускания должна в 3-5 раз быть выше значения частот исследуемых сигналов. Для простых усилителей звуковой частоты и цифровых схем достаточно параметра в 25 МГц. Для профессиональных исследований и радиочастотных схем будет нужно устройство с полосой пропускания порядка 100-200 МГц.

Сегодня вполне можно купить устройства, выпущенные 30-40 лет назад. Однако такой осциллограф лучше не использовать, ведь:

  • Для калибровки необходимо использовать подстроечники, которых полно и сверху и сбоку. Обеспечить точную настройку будет затруднительно.
  • Высохшие электролиты.
  • Вес.
  • Габариты и так далее.

Похожие темы:

Источник: https://tehpribory.ru/glavnaia/pribory/ostsillograf.html

Базовые измерительные приборы. Осциллограф: «рисующий сигнал»

Мы живем в технологической цивилизации. Люди создали вторую природу – мир механизмов, сложнейших машин, радиоэлектронных устройств, которые используют практически весь известный диапазон электромагнитных излучений. Но человеческие органы зрения способны воспринимать только видимый свет.

Мы не можем увидеть электрический ток, радиоволны, не можем без помощи приборов измерить даже простейшие параметры электрического сигнала. При работе со сложной радиоэлектронной аппаратурой часто возникает задача воспроизведения формы сигналов, т.е. зависимости мгновенного значения напряжения от времени.

Её решение позволяет сразу оценить многие параметры колебаний, например, искажение их формы, наличие помех и многое другое. Воспроизведение формы сигналов играет важную роль при проверке и настройке аудио- и видеотрактов аппаратуры.

Для визуализации сигналов используются приборы, которые называются осциллографами, однако определение формы сигналов возможно не только во временной области, но и в частотной. Задачу воспроизведения сигнала в частотной области решают анализаторы спектра и измерители амплитудно-частотных характеристик, о которых будет рассказано в заключительной части этой брошюры.

ЭЛЕКТРОННЫЕ ОСЦИЛЛОГРАФЫ

В настоящее время одним из наиболее распространенных радиоизмерительных приборов является электронный осциллограф, и это не удивительно, ведь он обладает исключительной наглядностью представления исследуемых сигналов, удобством и универсальностью.

Осциллограф позволяет рассмотреть любые электрические процессы, даже если сигнал появляется в случайный момент времени и длится миллиардные доли секунды. По изображению на экране осциллографа можно определить амплитуду рассматриваемого сигнала и длительность любого его участка.

С помощью осциллографа можно измерять частоту, фазу и коэффициент модуляции сигнала, а также производить другие комплексные измерения.

Осциллографические измерения отличаются широким диапазоном исследуемых частот (от постоянного тока до СВЧ), возможностью запоминания и последующего воспроизведения сигналов, высокой чувствительностью и возможностью отделения сигналов от помех.

КЛАССИФИКАЦИЯ ОСЦИЛЛОГРАФОВ

По назначению и принципу действия осциллографы разделяются на:
Универсальные, скоростные, стробоскопические, запоминающие и специальные.

По числу одновременно наблюдаемых сигналов их делят на одно-, двух- и многоканальные осциллографы.

По отображающему устройству осциллографы делят на электронно-лучевые и матричные (газоразрядные, плазменные, жидкокристаллические и т.п.).

По принципу обработки информации осциллографы делят на аналоговые и цифровые.

Универсальные осциллографы – приборы общего назначения, предназначенные для наблюдения гармонических и импульсных сигналов.

С их помощью можно исследовать одиночные импульсы и пачки импульсов, получать одновременно изображение двух сигналов на одной развертке, детально исследовать любую часть сложного сигнала и многое другое.

Они позволяют исследовать сигналы с длительностью от единиц наносекунд до нескольких секунд в диапазоне амплитуд от долей милливольт до сотен вольт, а также измерять параметры таких сигналов с приемлемой для практики погрешностью 5-7%. Полоса пропускания универсальных осциллографов составляет 300 500 МГц и более.

Универсальные осциллографы разделяют на две группы: приборы моноблочной конструкции и приборы со сменными блоками.

Моноблочные осциллографы общего назначения – наиболее распространенный тип осциллографов.

Осциллографы со сменными блоками отличаются многофункциональностью, достигаемой за счет применения сменных блоков различного назначения.

Скоростные и стробоскопические осциллографы применяются для исследования переходных процессов в быстродействующих полупроводниковых приборах, интегральных микросхемах и переключающих элементах.

Запоминающие осциллографы могут сохранять и воспроизводить изображение сигнала в течение длительного времени после исчезновения его на входе. Основное назначение этих приборов – исследование однократных и редко повторяющихся процессов.

Осциллографы специального назначения предназначены для исследования телевизионных сигналов, они позволяют не только исследовать любую часть телевизионного сигнала с высокой временной стабильностью, но и передавать его в цифровом виде на компьютер для дальнейшей обработки.

ОСНОВНЫЕ БЛОКИ УНИВЕРСАЛЬНОГО ОСЦИЛЛОГРАФА

Рис. 1. Осциллограф С1-107 Общий вид

На рис. 1 показан внешний вид универсального аналогового осциллографа С1-107, а на рис. 2 показана его функциональная схема. Несмотря на разнообразие универсальных осциллографов, их функциональные схемы в целом одинаковы.

Осциллограф состоит из:

  • Электронно-лучевой трубки (ЭЛТ);
  • Канала вертикального отклонения Y;
  • Канала горизонтального отклонения X;
  • Канала Z;
  • Мультиметра;
  • Блока питания.

Канал вертикального отклонения усиливает или ослабляет исследуемый сигнал до значения, удобного для изучения на индикаторе. Положение ручки управления V/дел устанавливает усиление канала Y.

Канал состоит из входного делителя, в который входят разъемы, аттенюаторы и переключатели; усилителя, усиливающего сигнал и расщепляющего полярность сигнала для симметричной подачи на пластины ЭЛТ, линии задержки и выходного усилителя. Линия задержки задерживает сигнал на время, необходимое для срабатывания канала горизонтального отклонения, т. е.

генератора развертки и усилителя по оси X, чтобы движение луча по горизонтали началось раньше, чем усиленный сигнал поступит на пластины ЭЛТ. Это позволяет наблюдать передний фронт сигнала.

Рис. 2. Функциональная схема осциллографа С1-107

Канал горизонтального отклонения формирует синхронное с исследуемым сигналом пилообразное напряжение для создания оси времени на экране ЭЛТ. Формирователь импульсов запуска вырабатывает короткие запускающие импульсы. Генератор развертки создает линейно-нарастающее напряжение. Скорость нарастания регулируется ручкой Время/дел.

Это напряжение поступает на выходной усилитель X) который расщепляет полярность сигнала и усиливает напряжение развертки до значения, необходимого для требуемого масштаба изображения. Положительно нарастающее пилообразное напряжение подается на правую отклоняющую пластину ЭЛТ, а отрицательное – на левую. В результате луч по экрану трубки проходит слева направо установленное количество делений шкалы за единицу времени.

При переключении синхронизатора в режим непрерывных колебаний обеспечивается автоколебательный режим работы развертки.

Усилитель внутренней синхронизации усиливает часть исследуемого сигнала и передает его для запуска развертки.

Осциллографы имеют калиброванные развертки и снабжаются для удобства отсчета сетчатыми шкалами, которые наносятся с внутренней стороны экрана трубки. Это избавляет оператора от ошибки из-за явлений параллакса.

В состав осциллографа входят также калибраторы амплитуды и времени, предназначенные для калибровки масштабов каналов вертикального и горизонтального отклонения, и источники питания со стабилизацией.

Многие современные осциллографы имеют встроенные мультиметры, которые позволяют с высокой точностью измерять значения постоянных и переменных напряжений, токов и сопротивлений. Мультиметр осциллографа С1-107 работает следующим образом.

Измеряемые переменные токи и сопротивления преобразуются в переменное напряжение. Затем переменные напряжения преобразуются в постоянное напряжение, пропорциональное величине измеряемых параметров.

Затем аналоговый сигнал преобразуется в цифровой с помощью АЦП и поступает в знакогенератор, предназначенный для формирования и написания знаков на экране ЭЛТ.

Осциллограф может работать либо в режиме осциллографирования, либо в режиме мультиметра. Совмещение этих режимов в данной модели невозможно.

ЦИФРОВЫЕ ОСЦИЛЛОГРАФЫ

Рис. 3. Цифровой осциллограф

Цифровой осциллограф позволяет одновременно наблюдать на экране сигнал и получать численные значения ряда его параметров с большей точностью, чем это возможно путем считывания количественных величин непосредственно с экрана обычного осциллографа. Это возможно потому, что параметры сигнала измеряются непосредственно на входе цифрового осциллографа, тогда как сигнал, прошедший через канал вертикального отклонения, может быть измерен с существенными ошибками. Эти ошибки могут достигать 10%.

Параметрами, измеряемыми современными цифровыми осциллографами, являются: амплитуда сигнала, его частота или длительность. На экране осциллографа, помимо собственно осциллограмм, отображается состояние органов управления (чувствительность, длительность развертки и т. п.).

Предусмотрен вывод информации с осциллографа на печать и другие функциональные возможности. Однако этим не ограничиваются возможности цифровых осциллографов.

Сопряжение цифровых осциллографов с микропроцессорами позволяет определять действующее значение напряжения сигнала и даже вычислять и отображать на экране преобразования Фурье для любого вида сигнала.

В устройствах цифровых осциллографов осуществляется полная цифровая обработка сигнала, поэтому в них, как правило, используется отображение на новейших индикаторных панелях.

В современных цифровых осциллографах автоматически устанавливаются оптимальные размеры изображения на экране трубки.

Функциональная схема цифрового осциллографа (рис. 4) содержит аттенюатор входного сигнала; усилители вертикального и горизонтального отклонения; измерители амплитуды и временных интервалов; интерфейсы сигнала и измерителей; микропроцессорный контроллер; генератор развертки; схему синхронизации и электронно-лучевую трубку.

Цифровые осциллографы обеспечивают автоматическую установку размеров изображения, автоматическую синхронизацию, разностные измерения между двумя метками, автоматическое измерение размаха, максимума и минимума амплитуды сигналов, периода, длительности, паузы, фронта и спада импульсов и пр.

Амплитудные и временные параметры исследуемого сигнала определяются с помощью встроенных в прибор измерителей. На основании данных измерений микропроцессорный контроллер производит вычисление требуемых коэффициентов отклонения и развертки и через интерфейс устанавливает эти коэффициенты в аппаратной части каналов вертикального и горизонтального отклонения. Это обеспечивает неизменные размеры изображения по вертикали и горизонтали, а также автоматическую синхронизацию сигнала.

Микропроцессорный контроллер также опрашивает положение органов управления на передней панели, и данные опроса после кодирования снова поступают в контроллер, который через интерфейс включает соответствующий режим автоматического измерения. Результаты измерений индицируются на экране трубки, причем амплитудные и временные параметры сигнала отображаются одновременно.

Рис. 4. Функциональная схема цифрового осциллографа

ПОРТАТИВНЫЕ МУЛЬТИМЕТРЫ-ОСЦИЛЛОГРАФЫ

В последнее время на рынке контрольно-измерительных приборов появилась новая и довольно оригинальная их разновидность: портативные цифровые мультиметры-осциллографы.

Эти малогабаритные и сравнительно недорогие приборы сочетают в себе функцию мультиметра, позволяющего измерять параметры напряжений, токов и сопротивлений, измерять емкости, индуктивности, параметры транзисторов и диодов, и простого осциллографа.

Наиболее распространены на российском рынке мультиметры-осциллографы фирм BEETECH (рис. 5), Velleman, METEX и Tektronix.

Рис. 5. Мультиметр-осциллограф BEETECH 70

Источник: https://www.avclub.pro/articles/audio-video-ot-a-do-ya/bazovye-izmeritelnye-pribory-ostsillograf-risuyushchiy-signal/

Осциллографы. Виды и особенности. Устройство и работа. Применение

Для любого профессионального настройщика электронных устройств или для инженера по радиоэлектронным устройствам основным рабочим устройством является осциллограф. Без него нельзя обойтись при настройке телевизора, передатчика.

Осциллографы служат для контроля и наблюдения за периодическими сигналами различных форм, в том числе синусоидальной. Благодаря широкому интервалу развертки он дает возможность развернуть импульс даже для контроля наносекундных промежутков времени.

Осциллограф подобен работе телевизора, который изображает электрические сигналы.

Устройство и принцип действия

Для лучшего понимания действия прибора, разберем блок-схему типового осциллографа, так как все их основные виды имеют аналогичное устройство.

На этой схеме не изображены блоки питания: низковольтный блок, подающий питание для работы узлов, и источник повышенного напряжения, применяющийся для генерирования высокого напряжения, приходящего на электронно-лучевую трубку. Также на схеме нет калибратора для настройки и подготовки прибора к работе.

Тестируемый сигнал поступает на канал вертикального отклонения «Y», далее на аттенюатор, выполненный в виде многопозиционного переключателя, настраивающего чувствительность осциллографа.

Его шкала размечена в вольтах на сантиметр или в вольтах на одно деление. Это обозначает одно деление сетки координат на экране лучевой трубки. Там же изображены сами величины.

Если амплитуда сигнала неизвестна, то устанавливается наименьшая чувствительность. В этом случае даже большой сигнал на 300 В не повредит прибору.

Обычно в комплекте с осциллографом есть делители, в виде специальных насадок с разъемами. Они работают так же, как аттенюатор. Эти насадки компенсируют емкость кабеля при работе с малыми импульсами. На фото показан делитель. Коэффициент деления равен 1:10.

С помощью делителя возможности прибора расширяются, можно исследовать сигналы в несколько сотен вольт. После делителя сигнал проходит на предварительный усилитель, раздваивается и приходит на переключатель синхронизации и линию задержки, которая служит для компенсации времени сработки генератора развертки. Оконечный усилитель создает напряжение, поступающее на «Y» -пластины, и отклоняет луч в вертикальной плоскости.

Генератор развертки создает пилообразное напряжение, поступающее на пластины «Х» и горизонтальный усилитель, при этом луч отклоняется в горизонтальной плоскости.

Устройство синхронизации создает условия для работы генератора развертки в одно время с появлением сигнала. В итоге на дисплей осциллографа выводится изображение импульса.

Переключатель синхронизации работает в положениях синхронизации от:

  • Исследуемого сигнала.
  • Сети.
  • Внешнего источника.

Первое положение применяется чаще, так как оно более удобно.

Классификация

Осциллографы являются распространенным видом измерительных приборов. Существует несколько видов осциллографов, имеющих разные характеристики, устройство и работу.

Аналоговые осциллографы

Такие осциллографы являются классическими моделями этого типа измерительных приборов. Любые аналоговые осциллографы имеют делитель, вертикальный усилитель, синхронизацию и отклонение, блок питания и лучевую трубку.

Такие трубки имеют больший диапазон частоты. Отклонение луча на экране прямо зависит от напряжения пластин. Горизонтальная развертка работает по линейной зависимости от напряжения горизонтальных пластин.

Нижний предел частоты равен 10 герцам. Верхняя граница определяется емкостью пластин и усилителем. Сегодня аналоговые устройства вытесняются цифровыми приборами со своими достоинствами. Но аналоговые приборы пока не исчезают ввиду их малой стоимости.

Цифровые запоминающие

Если цифровые приборы сравнивать с аналоговыми, у них больше возможностей. Стоимость их постепенно снижается. Цифровой осциллограф включает в себя делитель, усилитель, преобразователь аналогового сигнала, памяти, блока управления и выведения на ЖК панель.

ЭТО ИНТЕРЕСНО:  Что такое система tn s

Принцип действия такого вида осциллографов придает им большие возможности. Входящий аналоговый сигнал модифицируется в цифровую форму, и сохраняется. Скорость сохранения определяется управляющим устройством. Ее верхняя граница задается скоростью преобразователя, а нижняя граница не имеет ограничений.

Преобразование сигнала в цифровой код дает возможность увеличить устойчивость отображения, сохранять данные в память, сделать растяжку и масштаб проще. Применение дисплея вместо электронной трубки позволяет отображать любые данные и осуществлять управление прибором. Дорогостоящие приборы оснащаются цветным экраном, что позволяет различать сигналы других каналов, курсоры, выделять цветом разные места.

Параметры цифровых осциллографов намного выше аналоговых моделей, в больших пределах находится растяжка сигнала. Кроме простых схем включения синхронизации, может использоваться синхронизация при некоторых событиях или параметрах сигнала. Синхронизацию можно увидеть непосредственно перед включением развертки.

Применяемые процессоры обработки сигнала дают возможность обработки спектра сигнала с помощью анализа преобразованием Фурье. Информация в цифровом виде позволяет записать в память экран с итогами измерения, а также распечатать на принтере. Многие приборы оснащены накопителями для записи изображения в архив и последующей обработки.

Цифровые люминофорные

Такой тип осциллографов работает на новой структуре построения, основанной на цифровом люминофоре. Он имитирует по подобию с аналоговыми приборами изменение изображения на экране. Люминофорные цифровые типы осциллографов дают возможность наблюдать на дисплее все подробности модулированных сигналов, как и аналоговые типы. При этом обеспечивается их анализ и хранение в памяти.

Люминофорные приборы, как и предыдущая рассмотренная модель, имеет свою память для хранения различной информации, в том числе хранится разница задержки времени между разными пробниками. Возможность люминофорных осциллографов выводить данные с изменяемой интенсивностью значительным образом упрощает поиск повреждений в импульсных блоках. Это выражено при вычислении глубины модуляции сигнала при регулировке напряжения на выходе, приводящее к нестабильному функционированию блоков.

В люминофорных цифровых осциллографах объединены достоинства цифровых и аналоговых устройств, а во многом превосходят их. Люминофорные приборы обладают всеми преимуществами запоминающих осциллографов, обеспечивая возможности аналоговых приборов: быструю реакцию на смену сигнала и его отображение с разной яркостью.

Цифровые стробоскопические

В этом виде осциллографов применяется эффект последовательного стробирования сигнала. При повторении сигнала выбирается мгновенное значение в определенной точке. При поступлении нового сигнала точка выбора смещается по сигналу. Так продолжается до полного стробирования сигнала. Модифицированный таким образом сигнал в виде огибающей линии мгновенных величин сигнала входа, повторяет форму сигнала.

Продолжительность модифицированного сигнала на много больше продолжительности тестируемого сигнала, а значит, имеется сжатие спектра. Это соответствует увеличению полосы пропускания. Стробоскопические виды осциллографов имеют большие полосы пропускания, и дают возможность производить исследования периодических сигналов с наименьшей продолжительностью. Стоимость стробоскопических осциллографов очень высока, поэтому их применяют чаще всего для сложных задач.

Виртуальные осциллографы

Новый вид приборов может быть отдельным устройством с параллельным портом для вывода или ввода информации, а также с портом USB, а также встроенным вспомогательным прибором на базе карт ISA. Программная оболочка виртуальных осциллографов позволяет полностью управлять устройством, и имеет несколько возможностей сервиса: импорт и экспорт информации, цифровая фильтрация, разнообразные измерения, обработка информации математическим способом и т.д.

Осциллографы с применением персонального компьютера могут применяться для широких возможностей измерения. Например, для обслуживания и разработки радиотехнической и электронной аппаратуры, в телекоммуникационной связи, при изготовлении компьютеризированного оборудования, при выполнении диагностических мероприятий средств автотранспорта на станциях технического обслуживания и для многих других случаев, где требуется оценка и тестирование неустойчивых переходных процессов.

Виртуальные модели осциллографов являются хорошим альтернативным вариантом для стандартных запоминающих цифровых осциллографов, так как они обладают достоинствами в виде малой стоимости, простоте применения, компактных размеров и высокого быстродействия. К недостаткам виртуальных осциллографов относится невозможность измерения и отображения постоянной величины сигналов.

Портативные осциллографы

Цифровые технологии быстро развиваются, в результате чего цифровые стационарные приборы модифицируют в портативные устройства с хорошими параметрами габаритных размеров и массы, а также низким расходом электрической энергии.

При этом портативные осциллографы с питанием от гальванических элементов не уступают по характеристикам стационарным приборам по количеству функций, имеют большие возможности использования в разных областях научных исследований, промышленном производстве.

Осциллограф

Радиоэлектроника для начинающих

Если спросить профессионального регулировщика электронной аппаратуры или радиоинженера: «Какой самый главный прибор на вашем рабочем месте?» Ответ будет однозначным: «Конечно, осциллограф!». И это действительно так.

Конечно, невозможно обойтись без мультиметра. Измерить напряжение в контрольных точках схемы, замерить сопротивление и ток, «прозвонить» диод или проверить транзистор все это важно и нужно.

Но когда речь заходит о регулировке и настройке любого электронного устройства от простого телевизора до многоканального передатчика орбитальной станции, то без осциллографа обойтись невозможно.

Осциллограф предназначен для визуального наблюдения и контроля периодических сигналов любой формы: синусоидальной, прямоугольной и треугольной. Благодаря широкому диапазону развёртки он позволяет так развернуть импульс, что можно контролировать даже наносекундные интервалы. Например, измерить время нарастания импульса, а в цифровой аппаратуре это очень важный параметр.

Осциллограф – это своего рода телевизор, который показывает электрические сигналы.

Как работает осциллограф?

Чтобы понять, как работает осциллограф, рассмотрим блок-схему усреднённого прибора. Практически все осциллографы устроены именно так.

На схеме не показаны только два блока питания: высоковольтный источник, который используется для вырабатывания высокого напряжения поступающего на ЭЛТ (электронно-лучевая трубка) и низковольтный, обеспечивающий работу всех узлов прибора. И отсутствует встроенный калибратор, который служит для настройки осциллографа и подготовки его к работе.

Исследуемый сигнал подаётся на вход «Y» канала вертикального отклонения и попадает на аттенюатор, который представляет собой многопозиционный переключатель, регулирующий чувствительность. Его шкала отградуирована в V/см или V/дел.

Имеется в виду одно деление координатной сетки нанесённой на экран ЭЛТ. Там же нанесены сами величины: 0,1 В,10 В, 100 В. Если амплитуда исследуемого сигнала неизвестна, мы устанавливаем минимальную чувствительность, например 100 вольт на деление.

Тогда даже сигнал амплитудой 300 вольт не выведет прибор из строя.

В комплект любого осциллографа входят делители 1 : 10 и 1 : 100 они представляют собой цилиндрические или прямоугольные насадки с разъёмами с двух сторон. Выполняют те же функции, что и аттенюатор. Кроме того при работе с короткими импульсами они компенсируют ёмкость коаксиального кабеля. Вот так выглядит внешний делитель от осциллографа С1-94. Как видим, коэффициент деления его составляет 1 : 10.

Благодаря внешнему делителю удаётся расширить возможности прибора, так как при его использовании становится возможным исследование электрических сигналов с амплитудой в сотни вольт.

С выхода входного делителя сигнал поступает на предварительный усилитель. Здесь он разветвляется и поступает на линию задержки и на переключатель синхронизации. Линия задержки предназначена для компенсации времени срабатывания генератора развёртки с поступлением исследуемого сигнала на усилитель вертикального отклонения. Оконечный усилитель формирует напряжение, подаваемое на пластины «Y» и обеспечивает отклонение луча по вертикали.

Генератор развёртки формирует пилообразное напряжение, которое подаётся на усилитель горизонтального отклонения и на пластины «X» ЭЛТ и обеспечивает горизонтальное отклонение луча. Он имеет переключатель, градуированный как время на деление («Время/дел»), и шкалу времени развёртки в секундах (s), миллисекундах (ms) и микросекундах (μs).

Устройство синхронизации обеспечивает начало запуска генератора развёртки одновременно с возникновением сигнала в начальной точке экрана. В результате на экране осциллографа мы видим изображение импульса развёрнутое во времени. Переключатель синхронизации имеет следующие положения:

  • Синхронизация от исследуемого сигнала.
  • Синхронизация от сети.
  • Синхронизация от внешнего источника.

Первый вариант наиболее удобный и он используется чаще всего.

Осциллограф С1-94

Кроме сложных и дорогих моделей осциллографов, которые используются при разработке электронной аппаратуры, нашей промышленностью был налажен выпуск малогабаритного осциллографа C1-94 специально для радиолюбителей. Несмотря на невысокую стоимость, он хорошо зарекомендовал себя в работе и обладает всеми функциями дорогого и серьёзного прибора.

В отличие от своих более «навороченных» собратьев, осциллограф С1-94 обладает достаточно небольшими размерами, а также прост в использовании. Рассмотрим его органы управления. Вот лицевая панель осциллографа С1-94.

Справа от экрана сверху вниз.

  • Ручка: «Фокус».
  • Ручка «Яркость».Этими регуляторами можно настроить фокусировку луча на экране, а также его яркость. В целях продления срока службы ЭЛТ желательно выставлять яркость на минимум, но так, чтобы показания были видны достаточно чётко.
  • Кнопка «Сеть». Кнопка включения прибора.
  • Кнопка установки времени развёртки. Грубое переключение коэффициентов развёртки. Можно установить миллисекунды (ms) и микросекунды (μs). Напомним, что 1 ms = 1000 μs. Подробнее о сокращённой записи численных величин.
  • Кнопка режима «Ждущ-Авт».Это кнопка выбора ждущего и автоматического режима развёртки. При работе в ждущем режиме запуск и синхронизация развёртки производится исследуемым сигналом. При автоматическом режиме запуск развёртки происходит без сигнала. Для исследования сигнала чаще используется ждущий режим запуска развёртки.
  • Вот этой кнопкой производится выбор полярности запускающего импульса. Можно выбрать запуск от импульса положительной или отрицательной полярности.
  • Кнопка установки синхронизации «Внутр-Внешн».Обычно используется внутренняя синхронизация, так как для использования внешнего синхросигнала нужен отдельный источник этого внешнего сигнала. Понятно, что в условиях домашней мастерской это в подавляющем случае не нужно. Вход внешнего синхросигнала на лицевой панели осциллографа выглядит вот так.
  • Кнопка выбора «Открытого» и «Закрытого» входа.Тут всё понятно. Если предполагается исследование сигнала с постоянной составляющей, то выбираем «Переменный и постоянный». Этот режим называется «Открытым», так как на канал вертикального отклонения подаётся сигнал, содержащий в своём спектре постоянную составляющую или низкие частоты.При этом, стоит учитывать, что при отображении сигнала на экране он уйдёт вверх, так как к амплитуде переменной составляющей добавиться и уровень постоянной составляющей. В большинстве случаев лучше выбирать «закрытый» вход (~). При этом постоянная составляющая электрического сигнала будет отсечена и не отображается на экране.
  • Клемма «корпус» служит для заземления корпуса прибора. Это делается в целях безопасности. В условиях домашней мастерской порой нет возможности заземлить корпус прибора. Поэтому приходится работать без заземления. При этом важно помнить, что во включенном состоянии на корпусе осциллографа может быть потенциал напряжения. При касании корпуса может «дёрнуть». Особенно опасно дотрагиваться одной рукой до корпуса осциллографа, а другой рукой до батарей отопления или других работающих электроприборов. В таком случае опасный потенциал с корпуса пройдёт через ваше тело («рука» — «рука») и вы получите электрический удар! Поэтому при работе осциллографа без заземления желательно не дотрагиваться до металлических частей корпуса. Это правило справедливо и для прочих электроприборов с металлическим корпусом.

  • По центру лицевой панели переключатель «развёртка» — Время/дел. Именно этот переключатель управляет работой генератора развёртки.
  • Чуть ниже располагается переключатель входного делителя (аттенюатора) — V/дел. Как уже говорилось, при исследовании сигнала с неизвестной амплитудой, необходимо выставить максимально возможное значение V/дел. Так для осциллографа С1-94 нужно установить переключатель в положение 5 (5V/дел.). В таком случае одна клетка на координатной сетке экрана будет равна 5-ти вольтам. Если ко входу «Y» осциллографа подключить делитель с коэффициентом деления 1 к 10 (1 : 10), то одна клетка будет равна 50-ти вольтам (5V/дел. * 10 = 50V/дел.).

Также на панели осциллографа имеются:

  • Ручка «Перемещение луча по горизонтали».Она служит для корректировки положения луча в горизонтальном направлении. Если покрутить данную ручку, то изображение развёртки будет смешатся либо вправо, либо влево.
  • Также есть и ручка «Перемещение луча по вертикали».С помощью её можно отрегулировать положение развёртки на экране по вертикали.Ручки «Перемещение луча по горизонтали» и «Перемещение луча по вертикали» служат исключительно для настройки комфортного отображения осциллограммы сигнала на экране. Они никак не влияют на настройку работы самого осциллографа.
  • А вот ручка «Уровень синхронизации» необходима для того, чтобы «остановить» осциллограмму сигнала на экране.Поворотом этой ручки добиваются того, чтобы изображение сигнала «застыло», а не «убегало». Иногда, чтобы поймать изображение с помощью ручки «Уровень» приходится изменить время развёртки переключателем Время/дел.
  • Входной разъём «Y» , к которому подключается измерительный щуп или внешний делитель выглядит так.Внизу указываются параметры входа, а именно входное сопротивление (1 MΩ) и входная ёмкость (40pF). Чем выше входное сопротивление измерительного прибора, тем лучше. Таким образом при измерении прибор не шунтирует элементы тестируемой схемы и не вносит искажений в измеряемый сигнал. Входная ёмкость прежде всего влияет на возможность исследования высокочастотных сигналов.

В настоящее время, с развитием цифровой техники, стали широко внедряться цифровые осциллографы. По сути это гибрид аналоговой и цифровой техники. Отношение к ним неоднозначное, как к мясорубке с процессором или к кофемолке с дисплеем.

Аналоговая аппаратура всегда была надежной и удобной в работе. Кроме того она легко ремонтировалась. Цифровой осциллограф стоит на порядок дороже и очень сложен в ремонте. Плюсов конечно много.

Если аналоговый сигнал с помощью АЦП (аналогово-цифрового преобразователя) перевести в цифровую форму, то с ним можно делать всё что угодно.

Его можно записать в память и в любой момент вывести на экран для сравнения с другим сигналом, складывать в фазе и противофазе с другими сигналами. Конечно, аналоговая техника это хорошо, но за цифровой электроникой будущее.

» Радиоэлектроника для начинающих » Текущая страница

Также Вам будет интересно узнать:

Источник: https://go-radio.ru/oscillograf.html

Аналоговый осциллограф

Осциллограф – прибор, используемый  для наблюдения формы сигнала напряжения во времени. Выглядеть он может примерно вот так:

Здесь мы видим экран, на котором отображается сигнал. Форма сигнала на осциллографе называется осциллограммой.

Ниже на картинке можно увидеть щуп для осциллографа.

Если у мультиметра щуп состоит из простого провода, то щуп осциллографа состоит кабеля. А в кабеле два провода-щупа, которые в конце разветвляются. Этот кабель способен измерять высокочастотные напряжения без помех. Пипочка посередине – это сигнальный щуп, а экран – это щуп масса или земля. Электронщики по разному его называют, но я привык так. На конце щупа зажим белый крокодильчик – это земля, а сигнальный – с иголочкой.

Подключаем кабель в разъем. На моем осциллографе имеется два разъема. В моем случае осциллограф двухканальный. На некоторых крутых осциллографах можно увидеть даже по 4 и более каналов.

Бывает ситуация, когда надо определить сигнальный провод, для этого берем один из проводов, касаемся пальцем и смотрим на дисплей осциллографа. Если сигнал не исказился – это земля. Если исказился – это сигнальный. На фото ниже  пример  определения сигнального провода.

Как пользоваться осциллографом

Осциллографом мы можем измерять  только форму напряжения, силу тока измерять напрямую не можем! Если только косвенно, используя шунт. Для того, чтобы измерить величину напряжения постоянного тока, нам понадобится источник постоянного напряжения. Это может быть простая батарейка или блок питания. В моем случае – это Блок питания.  Для наглядности выставляем 1 Вольт.

ЭТО ИНТЕРЕСНО:  Тахогенератор что это такое

Единица измерения осциллографа – сторона квадратика на дисплее. Для того, чтобы измерять в масштабе 1:1, мы ставим щелкунчик по У на 1.

Цепляемся землей на “минус” блока питания, сигнальным  на “плюс” блока питания. Видим  такую картину:

Линия сдвинулась вверх на 1 квадратик. Это значит, что во  времени сигнал с блока питания все время 1 Вольт.

А как же измерить сигналы, которые скажем 100 Вольт? Для этого и придуман щелкунчик  по У :-). Оставляем на блоке питания 1 Вольт и  щелкаем на риску “2”.

Что это значит? Это значит, что полученный сигнал на дисплее надо умножить на 2. 

А вот и сигнал

На осциллограмме мы видим значение по У=0,5. Умножаем это значение на то, которое на риске осциллографа и получаем искомое значение. То есть 2х0,5=1 Вольт.

А вот такой будет сигнал, если мы поставим щелкунчик на 5.

 5х0,2=1 Вольт.

Если же прикладываем щупы наоборот, то ничего страшного не происходит.  Например, выставляем 2 Вольта на блоке питания. Земля осциллографа к “плюсу” блока, а сигнальный к “минусу” блока  – то есть все подцеплено наоборот. Линия у нас просто ушла  вниз, но от этого ничего не меняется. 2 Вольта как есть , так и осталось.

А вот для практики, как я уже говорил, требуется знать форму сигнала. В электронике используются на 90 % периодические сигналы. Это значит, что они повторяются через какой-то промежуток времени. Очень часто нужно узнать период и частоту переменного сигнала. Для этого и используется наш электронно-лучевой приборчик.

Для того, чтобы не спалить осциллограф, я взял трансформатор. Благодаря понижающему трансформатору, на выходе у меня амплитуда напряжения (это значит от нуля и до самого верхнего или нижнего пика) в пределах 1,5 Вольта, а заходит на первичную обмотку напряжение  220 Вольт.

Цепляемся ко вторичной обмотке трансформатора  щупами осциллографа и выводим показания на дисплей.

В идеале нам должна доставляться в розетки чистая синусоида. Россия, что же еще сказать))). Ну и ладно. Думаю в  ваших  дом в розетку идет  синусоида  почище моей :-).

Период и частота сигнала

В периодическом сигнале нам важны такие параметры, как частота сигнала и его форма. Поэтому, чтобы определить частоту, мы должны знать период. T – период, V – частота. Они взаимосвязаны между собой формулами:

Определим период сигнала. Период –  это время, через которое сигнал опять повторяется.

Считаем стороны квадратиков  по Х. Я насчитал 4 стороны квадратика.

Далее смотрим на крутилку, по Х, которая у нас отвечает за временную развертку. Риска стоит на 5. Сверху написана цена этого деления  – msec/div . То есть получается 5 миллисекунд на одну сторону квадратика.

Милли – это тысяча. Следовательно 0,005 сек. Это значение умножаем на наши сосчитанные стороны квадратов. 0,005х4=0,02. То есть один период у нас длится 0,02 сек или 20 миллисекунд. Зная период, находим по формуле выше частоту сигнала. V= 1/0,02=50 Гц. Частота напряжения в нашей розетке 50 Гц, что и требовалось доказать.

В настоящее время я себе купил уже цифровой осциллограф

Подробнее про цифровой осциллограф вы можете прочитать по этой ссылке.

Источник: https://www.ruselectronic.com/ostsillograf-osnovy-ekspluatatsii/

Что такое осциллограф и как им пользоваться

Начинающим подробно о осциллографе, о том что это за измерительный прибор, как он работает и как используется в радиоэлектронике.

Как работает осциллограф

Осциллограф, в прямом смысле слова, является глазами радиолюбителя. Он позволяет не только оценить какие-то основные физические характеристики сигнала (напряжение, частота, сила тока), но и буквально увидеть график функции исследуемого сигнала, увидеть какие-то отклонения сигнала от нормы, искажения его формы, наличие помех и паразитных импульсов или сигналов.

Экран осциллографа представляет собой координатную плоскость с осями X и Y, а поступающие на его вход сигналы отображаются на этой плоскости как алгебраические функции.

В настоящее время существует множество типов осциллографов, как обычных аналоговых, отображающих сигналы на экране электронно-лучевой трубки, так и цифровые и компьютерные.

Как бы не был устроен осциллограф, и каким бы способом, электронным аналоговым или цифровым, программным не происходило построение функции, всегда одно и тоже, — на экране отображается зависимость сигнала Y от сигнала X, или от сигнала Y от шкалы времени, выложенной на ось X.

Рис. 1. Схематическое изображение электронно-лучевой трубки.

В основе обычного осциллографа лежит электронно-лучевая трубка, — вакуумный прибор, состоящий из экрана, покрытого слоем люминофора и электронной пушки, создающей электронный луч, направленный на этот экран. В месте попадания луча на экран люминофор светится, и мы видим светящуюся точку. Еще есть пластины горизонтального и вертикального отклонения. Ма рисунке 1 изображена схематически электронно-лучевая трубка, направленная экраном на вас, уважаемый читатель.

Рис. 2. Как отклоняется луч, если подать напряжение на пластины Y.

Круг -это корпус трубки, прямоугольник — экран, покрытый люминофором, а четыре черточки, обозначенные Х1, Х2, Y1, Y2 — это пластины горизонтального (X) и вертикального отклонения (Y). Точка в центре — «отпечаток» электронного луча на люминофоре.

Как уже было сказано, пушка электроннолучевой трубки создает поток электронов (электронный луч), который направлен в сторону экрана. Когда на этот луч не воздействуют никакие электрические или магнитные поля он летит себе в центр экрана.

Отколоняющие платины расположены с четырех сторон от луча, и если на них подать какое-то напряжение луч отклонится в сторону пластины под положительным потенциалом. Величина этого отклонения будет пропорциональна величине этого потенциала.

Рис. 3. Как отклоняется луч, если подать напряжение на пластины Х.

На рисунке 2 показано как отклоняется луч, если подать напряжение на пластины Y, причем, на Y2 — отрицательный полюс, а на Y1 — положительный. Если сменить полярность, — отклонение будет в другую сторону от среднего положения. Аналогичным образом отклоняется луч и при подаче напряжения на пластины X (рис. 3). А вот на рис. 4 показано что будет, если под напряжением будут и горизонтальные (X) и вертикальные (Y) пластины.

Так, изменяя напряжение на пластинах вертикального и горизонтального отклонения можно «гонять» луч как угодно по экрану, и вырисовывать им любые фигуры. При быстром перемещении луча, благодаря известному свойству человеческого зрения, и послесвечению люминофора электроннолучевой трубки, точка превратится в линию, и на экране появится геометрическая фигура.

Рис. 4. Что будет если под напряжением горизонтальные (X) и вертикальные (Y) пластины.

Теперь понятно, что изменяя напряжение между пластинами X можно перемещать луч по горизонтали, а изменяя напряжение между пластинами Y -по вертикали.

Для подачи сигналов на каналы вертикального и горизонтального отклонения у осциллографа есть входы «У» и «X». Но, обычно, необходимо видеть не зависимость одного сигнала от другого, а зависимость сигнала, поданного на вход «У» от шкалы времени, выложенного на ось X.

Чтобы это было возможно в осциллографе есть генератор горизонтальной развертки, который вырабатывает напряжение, изменяющееся по «пилообразному» закону (рис. 5). Это напряжение подается на пластины горизонтального отклонения (X).

Рис. 5. Напряжение, изменяющееся по пилообразному закону.

Пилообразное напряжение плавно и равномерно возрастает, перемещая луч по горизонтали от одного края экрана до другого, а затем резко возвращает луч обратно. При обратном перемещении специальная схема гасит луч. В результате, на экране луч постоянно перемещается слева — направо, а быстрота перемещения луча зависит от степени «наклона» пилообразного напряжения (то есть, от его частоты).

При частоте развертки более 20 Гц мы уже видим на экране не перемещающийся луч, а горизонтальную линию (рис. 6). Причем положение этой линии по вертикали зависит от напряжения, поданного на вход У (на вертикальные пластины).

Например, если масштаб оси У установить 1V на деление (на экране осциллографа обычно нанесена масштабная сетка), то при подаче на вход У постоянного напряжения величиной, например, +2V, линия переместится вверх на два деления (рис. 7).

Рис. 6. Горизонтальная линия на экране осциллографа.

Рис. 7. Горизонтальная линия на экране осциллографа смещенная вверх.

Рис. 8. График функции напряжения от времени на экране осциллографа — синусоида.

Рис. 9. График функции напряжения от времени на экране осциллографа — прямоугольные импульсы.

Если на вход У подать переменное напряжение или импульсы, горизонтальная линия изогнется, нарисовав на экране график функции этого напряжения от времени (рис.8 и рис.9.). По масштабной сетке по вертикали можно определить амплитуду сигнала, а по горизонтальной — его период.

Промышленный осциллограф

А сейчас перейдем к изучению конкретного прибора, — осциллографа С1-65. Это довольно старый и громоздкий прибор, в недавнем прошлом модель С1-65 (и С1-65А), можно сказать, была «хитом» радиоэлектронной промышленности. Ими оснащались практически все советские предприятия, производящие электронную технику военного и гражданского назначения.

Затем, после модернизации или закрытия, перепрофилирования, переоборудования предприятий, а так же, по истечении установленного срока эксплуатации, осциллографы С1-65 списывались и попадали к радиолюбителям или на радиорынки самым разными путями. Как бы там ни было, но С1-65 стал одним из самых распространенных осциллографов, доступных радиолюбителям. Следующим, в «списке популярности», был сервисный осциллограф С1-94, а далее «игрушки» -ОМ Л-2 и Н-313.

Обладателем какого бы осциллографа вы не являлись, все сказанное далее в отношении С1-65 будет в значительной степени справедливо и для вашего прибора.

На рисунке в тексте приводится схематическое изображение фронтальной панели С1-65. Панель осциллографа — светло-серого цвета зонирована по функциям синими тонкими линиями (на рисунке эти линии черные).

Для регулировки параметров луча есть ручки регулировки яркости и фокуса. Регулятором яркости регулируется не яркость всего экрана (как в телевизоре), а яркость только луча, или линии которую он выресовывает. Луч зеленого цвета. Регулятором фокуса добиваются чтобы линия (или точка) была наиболее тонкой.

Регулятор подсветки управляет яркостью лампочки, которая подсвечивает координатную сетку, расположенную перед экраном. Питание включается тумблером в нижнем правом углу.

Включив осциллограф первый раз вы можете не обнаружить на экране луча. Это может быть из-за того, что луч находится в зоне за пределами экрана или включен ждущий режим.

Чтобы выключить ждущий режим переключатель ждущего режима должен быть в крайне верхнем положении. «Поймать» луч и установить в центр экрана можно регулятором баланса (в других осциллографах он может быть обозначен как регулятор сдвига по вертикали) и регуляторами сдвига по горизонтали. Для регулировки луча по горизонтали есть две ручки — «грубо» (верхняя) и «точно» (нижняя). Этими ручками можно сдвигать влево или вправо путь, по которому движется луч.

Скорость, с которой движется луч по экрану зависит от положения ручки регулировки развертки («время/деление»). Ручка сделана в виде пирамидки из двух ручек, — большой, изменяющей период развертки скачкообразно, и маленькой для плавной регулировки.

Если вы обе эти ручки повернете налево в крайние положения период развертки будет минимальным и на экране будет видна перемещающаяся слева направо точка (но это при условии, что переключатель развертки, распложенный над эими ручками переключен в крайне левое положение). Поворачивая эти ручки направо уменьшаем период развертки и скорость движения луча увеличивается. На отметке «5mS» (5 миллисекунд) точка превращается в линию.

Регулируя развертку нужно учесть, что значения, подписанные на шкале вокруг ручки скачкообразной регулировки развертки верны только тогда, когда ручка плавной регулировки находится в крайне правом положении.

Уменьшить период развертки в десять раз можно переключив переключатель, расположенный над ручками регулировки развертки, в среднее положение. А если его переключить в правое положение, перемещением луча по горизонтали будет управлять не блок развертки осциллографа, а внешний сигнал, поданный на вход X.

Обычно требуется видеть функцию зависимости напряжения от времени. В этом случае развертка должна быть включена, а входной сигнал подают на вход Y, который может иметь три состояния, переключаемых переключателем входа Y.

В его крайне левом положении переключателя входа Y, вход непосредственно соединен с разъемом «вход Y». Так осциллограф будет показывать как постоянную, так и переменную составляющую исследуемого сигнала. В среднем положении вход Y выключен, а в крайне правом — он подключен через конденсатор, поэтому постоянную составляющую прибор, в этом положении переключателя, не показывает.

Рис. 1. Схематическое изображение фронтальной панели осциллографа С1-65.

Усиление усилителя вертикального отклонения регулируют двумя ручками, -переключателем V/деление и регулятором чувствительности Y, которые расположены одна на другой «пирамидкой». Например, если мы установим переключатель в положение «1V/дел.», а ручку регулировки повернем в крайне правое положение, то при подаче на вход Y напряжения 1V луч переместится вверх на одно деление.

Теперь, когда все работает, давайте попробуем посмотреть наводки в вашем теле. Установите переключатель «время/деление» на «5 mS», переключатель «V/деление» — на «2V». Подключите к входу Y щуп (или просто всуньте в разъем кусок проволоки) и прикоснитесь к нему пальцами.

На экране появится синусоида, возможно искаженная (её форма зависит от того, какие наводки есть в вашем теле). Если синусоида будет смещаться по горизонтали или будет иметь вид нескольких хаотически движущихся синусоид, нужно повернуть ручку «уровень» так, чтобы изображение стабилизировалось.

По клеткам на экране, зная сколько вольт на деление приходится по вертикали, и сколько миллисекунд на деление приходится по горизонтали, можно примерно вычислить амплитуду и период сигнала, частоту.

В правой части фронтальной панели, вверху, расположены органы управления синхронизацией. Синхронизация может быть внутренней (то есть, от входного сигнала, поданного на вход Y), от электросети или от внешнего источника, поступающего на вход X. Выбор — переключателем вида синхронизации.

В нашем случае, переключатель в верхнем положении (внутренняя). Ниже расположен калибратор, он представляет собой источник импульсов частотой 1 кГц или постоянного напряжения строго заданного уровня. Хотите увидеть как выглядят прямоугольные импульсы, — включите щуп, подключенный к входу Y в гнездо калибратора (переключатель калибратора должен быть в положении «1кГц»).

Переключите «время/деления» развертки так, чтобы были видны отдельные импульсы (например, в положение 0,2mS). Затем, поворотом ручки «уровень» добейтесь неподвижности изображения. Если нужно, измените масштаб по вертикали (V/деление).

Амплитуду импульсов калибратора можно регулировать от 20mV до 50V переключателем калибратора.

Продолжение:

Литература: 1. РК-07-2003, РК-08-2007.

Источник: http://radiostorage.net/4122-chto-takoe-oscillograf-i-kak-im-polzovatsya.html

Понравилась статья? Поделиться с друзьями:
220 вольт
Как рассчитать силовой трансформатор

Закрыть