Что называют силой тока

Что такое сила тока. Как измерять силу тока в электрической цепи

что называют силой тока

Понятие о силе тока является основой современной электротехники. Без этих базовых знаний невозможно сделать расчеты к схемам, выполнить действия по электрике, предотвратить, выявить и устранить повреждение в цепи.

Как возникает

Для понимания, что такое сила тока, следует знать условие его возникновения – существование частиц со свободным зарядом. Он перемещается через проводник (его поперечное сечение) от одной точки к другой. Физика силы тока заключается в упорядоченном движении электронов, на которые действует электрическое поле от источника питания. Чем большее количество заряженных частиц переносится, и чем быстрее их передвижение в одном направлении, тем больший заряд дойдет до места назначения.

Помимо источника питания, элементами замкнутой цепи являются соединительные провода, по которым проходит электричество, и потребители энергии (установки, резисторы).

Дополнительная информация. В проводниках из металла в роли передатчика зарядов выступают электроны, газообразных – ионы, жидких – перенесение заряженных частиц выполняется с помощью обоих видов частиц. Нарушение порядка прохождения говорит о хаотичном движении зарядов, цепь при котором станет обесточенной.

Определение

Сила тока в проводнике – это количество электричества, перемещаемое через поперечное сечение за единичный интервал времени. Чтобы увеличить данное значение, нужно изъять из схемы лампу либо повысить магнитное поле, создаваемое батарейкой.

Единицей измерения силы электрического тока по международной системе СИ (Systеme International) считается ампер (А), названный по фамилии выдающегося французского научного деятеля XIX века Андре-Мари Ампера.

Дополнительная информация. Ампер – достаточно внушительная электрическая мера. Для жизни человека представляет смертельную опасность токовая величина до 0,1A. Горящая бытовая лампочка на 100 Вт пропускает электричество примерно в 0,5 А. В комнатном обогревателе это значение доходит до 10 А, портативному калькулятору будет достаточной одна тысячная доля ампера.

В электротехнической практике замеры малых величин могут выражаться в микро,- и миллиамперах.

Силу тока находят измерительным приспособлением (ампер,- или гальванометром), последовательно включая его в нужный участок цепи. Малые величины измеряют микро,- или миллиамперметром. Основными методами нахождения количества электричества при помощи приборов являются:

  • Магнитоэлектрический – при неизменной токовой величине. Такой способ отличают повышенная точность и малое потребление энергии;
  • Электромагнитный – для стационарных и изменяющихся величин. При использовании этого метода сила тока в цепи находится в результате преобразования магнитного поля в выходной сигнал модуляционного датчика;
  • Косвенный – основан на замере напряжения при известном сопротивлении. Далее вычисляют искомую величину по закону Ома, показанному ниже.

Согласно определению, силу тока (I) можно найти по формуле:

I = q/t, где:

  • q – заряд, идущий поперек проводника (Кл);
  • t – длительность времени, затраченного на перемещение частиц (с).

Формула силы тока читается следующим образом: необходимая величина I – это отношение прошедшего через проводник заряда к используемому отрезку времени.

Обратите внимание! Сила тока определяется не только через заряд, но и расчетными формулами на основе закона Ома, который гласит: сила электричества прямо пропорциональна напряжению проводника и обратно пропорциональна его сопротивлению.

Формула закона Ома поможет найти силу тока, которая выглядит отношением:

I = U / R, здесь:

  • U – напряжение (В);
  • R – сопротивление (Ом).

Эта установленная связь физических величин используется для различных расчетов:

  • учитывающих характеристики источника питания;
  • для вычислений в цепях токов любого направления;
  • для многофазных цепей.

Обратите внимание! Если проводники соединяются последовательным способом, то электричество каждого из них равно. Параллельное соединение предусматривает количество амперов, которое складывается из суммы токовых значений каждого проводника.

Как найти мощность (скорость передачи или преобразования энергии) с помощью токового значения? Для этого нужно воспользоваться формулой:

Р = U*I, где умножаемые значения упоминались выше.

Виды

При постоянном и переменном электричестве его сила бывает разного характера. Для цепи с движением частиц в постоянном направлении все параметры остаются неизменными. Переменный вид способен менять свою величину при одном и том же или меняющемся направлении. Количество электричества при этом бывает:

  • мгновенным, зависящим от амплитудной величины и частоты колебаний, связанной с угловой частотой;
  • амплитудным – максимальным значением мгновенной силы тока за определенный период;
  • эффективным – при превращении энергии количество теплоты от обоих видов тока одинаково.

Электросети бытового назначения пропускают переменный ток, преобразующийся в постоянный при прохождении через блок питания электроприбора (компьютера, телевизора).

Величина силы тока – понятие, тесно связанное с электрической энергией, имеющей огромное значение для сферы быта, народного хозяйства, объектов стратегического назначения. Более того, электроэнергетика является экономической основой государства и определяющим вектором развития внутри страны и на международном уровне.

Сила тока

Характеристикой тока в цепи служит величина, называемая силой тока (I). Сила тока – физическая величина, характеризующая скорость прохождения заряда через проводник и равная отношению заряда q, прошедшeгo через пoперeчное сечение проводника за промежуток времени t, к этому промежутку времени: I = q/t. Единица измерения силы тока – 1 ампер (1 А).

Определение единицы силы тока основано на магнитном действии тока, в частности на взаимодействии параллельных проводников, по которым идёт электрический ток. Такие проводники притягиваются, если ток по ним идёт в одном направлении, и отталкиваются, если направление тока в них противоположное.

За единицу силы тока принимают такую силу тока, при которой отрезки параллельных проводников длиной 1 м, находящиеся на расстоянии 1 м друг от друга, взаимодействуют с силой 2*10 -7 Н. Эта единица и называется ампером (1 А).

Зная формулу силы тока, можно получить единицу электрического заряда: 1 Кл = 1А * 1с.

Амперметр

Прибор, с помощью которого измеряют силу тока в цепи, называется амперметром. Его работа основана на магнитном действии тока. Основные части амперметра магнит и катушка. При прохождении по катушке электрического тока она в результате взаимодействия с магнитом, поворачивается и поворачивает соединённую с ней стрелку.

Чем больше сила тока, проходящего через катушку, тем сильнее она взаимодействует с магнитом, тем больше угол поворота стрелки. Амперметр включается в цепь последовательно с тем прибором, силу тока в котором нужно измерить, и потому он имеет малое внутреннее сопротивление, которое практически не влияет на сопротивление цепи и на силу тока в цепи.

У клемм амперметра стоят знаки «+» и «-», при включении амперметра в цепь клемма со знаком «+» присоединяется к положительному пoлюсу источника тока, а клемма со знаком «-» к отрицательному пoлюсу истoчникa тока.

Напряжение

Источник: https://footyclub.ru/pitomcy/chto-takoe-sila-toka-kak-izmeryat-silu-toka-v-elektricheskoi-cepi/

Что такое сила тока, формулы

что называют силой тока

Определение 1

Ток является процессом, при протекании которого (под непосредственным влиянием электрического поля) начинает осуществляться движение некоторых заряженных частиц.

Такими заряженными частицами могут выступить разные элементы (все будет зависеть от ситуации). В случае с проводниками, например, в роли таковых частиц, выступят электроны.

Сила тока, таким образом, будет считаться движением заряженных частиц, ориентированных в одном направлении.

Понятие силы тока

Сила электрического тока будет представлять величину, характеризующую порядок движения электрических зарядов, численно равную количеству заряда $\delta q$, который при этом протекает сквозь определенную поверхность $S$, (представляющую поперечное сечение проводника) за единицу времени:

$I=\frac{\delta q}{\delta t}$

С целью определения силы тока $I$, требуется разделить электрический заряд $\delta q$, прошедший через поперечное сечение проводника за время $\delta t$, на это время.

Сила тока будет зависимой от заряда, переносимого посредством всех частиц, скорости их ориентированного в конкретном направлении движения и площади поперечного проводникового сечения.

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

Рассмотрим проводник с площадью поперечного сече­ния $S$. Заряд всех частиц обозначим $q_о$. В объеме проводника, ограниченного двумя сечениями, содержится $nS\delta l$ частиц, где $n$ представляет их концентрацию. Их общий заряд окажется таким:

$q={q_о}{nS\delta I}$

При условии движения частиц со средней скоростью $v$, за время $\delta t=\frac{\delta I}{v}$ все частицы, заключенные в рассматриваемом объеме, успеют пройти через второе поперечное сечение, что означает соответствие силы тока расчетам по такой формуле:

$I={q_о}{nvS}$, где:

  • $I$ — обозначение силы электричества, измеряется в Амперах (А) или Кулонах/секунду;
  • $q$ — заряд, идущий по проводнику, единица измерения Кулоны (Кл);

В СИ единицу силы тока считают основной, а называется она ампер (А). Измерительным прибором выбран амперметр, чей принцип работы основывается на магнитном действии тока.

Замечание 1

При оценке скорости упорядоченного движения электронов внутри проводника, выполненная, согласно формуле для медного проводника при площади поперечного сечения в один квадратный миллиметр, мы получаем незначительную величину (0,1мм/с).

ЭТО ИНТЕРЕСНО:  Что относится к электрическому оборудованию

Отличие силы тока от напряжения

В физике различают такие понятия, как «сила тока» и «напряжение». Между ними существуют некоторые отличия, рассмотрение которых играет важное значение для понимания принципа действия силы тока.

Под «силой тока» понимается некоторое количество электричества, «напряжением», в то же время считается мера потенциальной энергии. При этом данные понятия достаточно сильно взаимозависимы. Важнейшими факторами, влияющими на них, являются:

  • материал проводника;
  • температура;
  • внешние условия.

Различия можно наблюдать также и в способе их получения. Если в случае воздействия на электрические заряды создается напряжение, ток возникнет уже за счет действия напряжения между точками схемы. Также существует различие и в сравнении с таким понятием, как «энергопотребление». Оно будет заключаться именно в мощности. Так, если напряжение требуется для характеристики потенциальной энергии, то ток уже будет характеризовать энергию кинетическую.

Способы определения силы тока

Вычисляется сила тока на практике с задействованием специальных измерительных приборов либо посредством отдельных формул (при условии наличия исходных данных). Основной формулой, согласно которой рассчитывается сила тока, выглядит следующим образом:

$I=\frac{q}{t}$

Существование электричества может быть постоянным (например, содержащийся в батарейке ток), а также переменным (ток в розетке). Освещение помещений и работа всех приборов электрического типа происходит именно посредством воздействия переменного электричества. Основным отличием переменного тока от постоянного выступает его более сильная склонность к трансформации.

Наглядным примером действия переменного тока может также послужить эффект включения люминесцентных ламп. Так в процессе включения такой лампы начинает осуществляться движение заряженных частиц то вперед, то назад, что объясняет действие переменного тока. Именно данный вид электричества считается наиболее распространенным в быту. Соответственно закону Ома, силу тока рассчитывают по формуле (для участка электроцепи):

$I=\frac{U}{R}$

Сила тока, таким образом, оказывается прямо пропорциональна напряжению $U$, измеряемому в Вольтах, к участку цепи и обратно пропорциональной $R$-сопротивлению проводника указанного участка, выражаемому в Омах. Расчет силы электричества в полной цепи рассчитан таким образом:

$I=\frac{E}{R+r}$, где:

  • $Е$ — электродвижущая сила, ЭДС, Вольт;
  • $R$ — внешнее сопротивление, Ом;
  • $r$ — внутреннее сопротивление, Ом.

Основными способами определения силы тока посредством систем приборов на практике являются следующие:

  1. Магнитоэлектрический измерительный метод. Его преимуществами выступают высокая чувствительность и точность показаний при незначительном энергопотреблении. Указанный способ применим исключительно при определении величины силы постоянного тока.
  2. Электромагнитный способ заключается в нахождении силы токов переменного и постоянного типов путем процесса трансформации из электромагнитного поля в сигнал магнитного модульного датчика.
  3. Косвенный метод направлен на определение за счет вольтметра напряжения при определенном сопротивлении.

Замечание 2

С целью нахождения силы тока, на практике зачастую применяется специальный прибор амперметр. Такое устройство включается в разрывы электроцепи в требуемой точке измерения силы электрозаряда, прошедшего за некоторое время через сечение провода.

При определении величины силы малого электричества применяют миллиамперметры, микроамперметры, а также гальванометры, также подключаемые к определенному месту в цепи, где необходимо найти силу тока. Подключение может быть выполнено двумя способами:

  • последовательным;
  • параллельным.

Определение силы тока, который потребляется, считается не так часто востребованным, как измерение напряжения или сопротивления. В то же время, без вычисления физической величины силы тока становится невозможным расчет потребляемой мощности.

Источник: https://spravochnick.ru/fizika/chto_takoe_sila_toka_formuly/

Единица измерения силы тока

что называют силой тока
Определение

Сила тока является количественной характеристикой тока.Силу тока ($I$) определяют как заряд ($\Delta q$), проходящий через поперечное сечение проводника за единицу времени:

\[I=\frac{\Delta q}{\Delta t}\left(1\right).\]

Это алгебраическая величина. Не смотря на то, что величину $I$ называют силой, в общепринятом понимании она силой не является. Мгновенное значение силы тока находят как:

\[I=\frac{dq}{dt}\left(2\right).\]

Ампер — единица измерения силы тока в Международной системе единиц

В системе СИ единицей измерения силы тока является ампер. Его обозначают буквой А. Один ампер — это сила такого постоянного электрического тока, при котором через поперечное сечение проводника за одну секунду проходит заряд, равный одному кулону:

\[1А=\frac{1\ Кл}{1\ с}.\]

Ампер (единица измерения силы тока) — это одна из семи основных единиц системы СИ. Еще в 1948 году в качестве определения единицы силы тока было принять явление взаимодействия пары параллельных проводников, по которым текут токи.

Мы помним, что когда по двум параллельным проводникам текут токи, имеющие одинаковые направления, то они притягиваются, если токи противоположно направлены, то проводники отталкиваются, возникает сила Ампера. Один ампер определяют используя понятие о силе Ампера.

Говорят, что ампер — это сила тока, проходящего в двух прямых бесконечно тонких и длинных проводниках, находящихся в вакууме порождающая силу Ампера (сила взаимодействия проводников) равную $2\cdot {10}{-7}Н$ на каждый метр проводника.

Свое название ампер получил в честь французского физика А.М. Ампера.

Один ампер, это достаточно большая сила тока. Считают, что для человека сила тока становится опасной от 0,001 А, сила тока от 0,1 А может нанести к значительный вред здоровью. В практических расчетах используют кратные и дольные единицы силы тока, используя при этом стандартные приставки системы СИ. Например, микроампер $1мкА={10}{-6}А;;килоампер\ 1кА=1000\ А.$

Единицы измерения силы тока в других системах единиц

В системе единиц, которая является расширением СГС и называется СГСМ (абсолютная электромагнитная система сантиметр, грамм, секунда), био (абампер) — единица измерения силы тока.

Один био (абампер) — это ток такой силы, который создает силу Ампера, равную 2 динам на каждый сантиметр длины проводника, которая возникает между двумя тонкими, длинными параллельными проводниками, расположенными на расстоянии 1 см, по которым текут токи.

\[1\ био=10\ А.\]

Силу тока (био) в системе СГСМ назвали в честь французского ученого Ж.Б Био. Иногда в системе СГСМ единицу измерения тока не именуют и называют просто единицей измерения тока СГСМ (эта единица эквивалентна единице био и абамперу(абА)).

В другом расширении системы СГС, системе СГСЭ (абсолютной электростатической системе сантиметр, грамм, секунда), статампер — единица измерения силы тока. Определяют статампер (статА) как силу тока, при которой за время равное одной секунде через поперечное сечение проводника проходит заряд в 1статкулон.

\[1\ А=2997924536,843\ статА.\]

Примеры задач с решением

Пример 1

Задание. Какой была средняя величина силы тока ($\left\langle I\right\rangle $), если конденсатор емкостью $C=100мкФ$ зарядили до напряжения $U=500$В за время $\Delta t=$0,5 с? В каких единицах будет измеряться полученная сила тока?\textit{}

Решение. Среднюю величину силы тока определим как:

\[\left\langle I\right\rangle =\frac{\Delta q}{\Delta t}\left(1.1\right).\]

Заряд, который получил конденсатор, найдем как:

\[\Delta q=C\cdot U\left(1.2\right).\]

Тогда выражение (1.1) преобразуем к виду:

\[\left\langle I\right\rangle =\frac{C\cdot U}{\Delta t}\ \left(1.3\right).\]

Определим, какие единицы получаются у нас в правой части выражения (1.3):

\[\left[I\right]=\left[\frac{C\cdot U}{\Delta t}\right]=\frac{\left[C\right]\left[U\right]}{\left[\Delta t\right]}=\frac{Ф\cdot В}{с}=\frac{Кл\cdot В}{с\cdot В}=\frac{А\cdot с}{с}=А.\]

Вычислим силу тока, учитывая, что $C=100мкФ={10}{-4}Ф$:

\[\left\langle I\right\rangle =\frac{{10}{-4}\cdot 500}{0,5}=0,1\ \left(А\right).\]

Ответ. $\left\langle I\right\rangle =0,1$ А

Пример 2

Задание. Какой будет сила тока в проводнике из стали, длина которого равна $l=10$м, а площадь поперечного сечения $S=2$ ${мм}2$, если на него подано напряжение равное $U=12мВ$? Ответ запишите в мА.\textit{}

Решение. Сделаем рисунок.

Основой для решения данной задачи служит закон Ома для участка цепи:

\[I=\frac{U}{R}\left(2.1\right),\]

где сопротивление проводника найдем как:

\[R=\rho \frac{l}{S}\left(2.2\right),\]

$\rho =12\cdot {10}{-8}Ом\cdot м$ — удельное сопротивление стали (его находим в справочниках). Окончательно сила тока равна:

\[I=\frac{US\ }{\rho l}(2.3).\]

Проверим, какая единица измерения получается в правой части выражения (2.3):

\[\left[I\right]=\left[\frac{US\ }{\rho l}\right]=\frac{\left[U\right]\left[S\right]}{\left[\rho \right]\left[l\right]}=\frac{В\cdot м2}{Ом\cdot м\cdot м}=\frac{В}{Ом}=\frac{с3А2}{м2кг}\cdot \frac{м2кг}{с3А}=А.\]

Проведем вычисления силы тока, учитывая, что $S=2$ ${мм}2=2\cdot {10}{-6}{{\rm м}}2$; $U=12мВ=12\cdot {10}{-3}{\rm В}$:

\[I=\frac{12\cdot {10}{-3}\cdot 2\cdot {10}{-6}\ }{12\cdot {10}{-8}\cdot 10}=2\cdot {10}{-2}(А)\]

Ответ. $I=20 мА$

Читать дальше: единица измерения силы.

Источник: https://www.webmath.ru/poleznoe/fizika/fizika_195_edinica_izmerenija_sily_toka.php

лекция

Определение: Направленное (упорядоченное) движение заряженных частиц называется электрическим током.

Если речь идет о движении микрочастиц, то говорят о токе проводимости. А, если о движении макрочастиц, то говорят о токе конвекции.

Исторически сложилось, что за направление тока принимают направление движения положительно заряженных частиц.

2.Плотность тока и сила тока

Для характеристики постоянного тока вводят две физические величины: векторную – плотность тока и скалярную – сила тока.

Определение: Плотностью тока называется физическая величина, определяющая заряд, прошедший через площадку dS за время dt следующим образом.

Пусть все частицы одинаковые и имеют заряд q и скорость υ, которая называется средней или упорядоченной или дрейфовой скоростью.

Определение:Силой тока называется поток плотности тока через какую-либо поверхность.

Силу тока можно определять как заряд, прошедший через поперечное сечение проводника за время Δt. Данное выражение используется для определения единицы заряда.

ЭТО ИНТЕРЕСНО:  Как определить активную мощность

3.Единицы силы и плотности тока

Определение:1 Ампер – единица СИ электрического тока, равная силе такого неизменяющегося тока, который при прохождении по двум бесконечно длинным проводникам ничтожно малой площади поперечного сечения вызывает силу взаимодействия между ними 2·10-7 Н на 1 м длины.

Плотность тока измеряется в А/м2.

4.Действия электрического тока

Непосредственно наблюдать электрический ток нельзя. О его существовании судят по макроскопическим проявлениям.

Магнитное Тепловое Химическое
Измерительные приборы, определяющие ток. Приборы нагревательных элементов. Происходят химические превращения при протекании тока.Электролиз.

5.Уравнение непрерывности

Закон сохранения заряда утверждает, что в замкнутой системе заряд сохраняется. Если система не замкнута, то заряд может изменяться.

Данное уравнение называется уравнением непрерывности в интегральной форме. Производная по времени связана с временной зависимостью заряда. Данное уравнение считается постулатом. По смыслу – это закон изменения заряда.

Используя понятие объемной плотности заряда и формулу Остроградского-Гаусса

получаем

 – уравнение непрерывности в дифференциальной форме.

Если ток постоянный, то , следовательно, линии плотности тока являются замкнутыми.

6.Поле в проводнике при постоянном токе

Если есть ток, значит, есть движение зарядов, следовательно, есть сила, которая заставляет двигаться заряды, есть ток, есть напряженность, которая направлена вдоль тока. В общем случае напряженность направлена под углом к поверхности. Если есть напряженность, то градиент потенциала вдоль проводника не равен нулю, следовательно, потенциал вдоль проводника изменяется. Говорят о падении потенциала.

7.Закон Ома в дифференциальной форме

Плотность тока и напряженность вдоль проводника взаимосвязаны между собой. Разумно предположить, что это самая простая связь, т.е. линейная.

где σ – удельная электропроводность.

Данный закон является постулатом.

Для металлов закон выполняется почти всегда, для полуметаллов начинаются отклонения при очень больших плотностях тока. Для других линейную связь можно заменить тензорной и закон Ома замыкает уравнения Максвелла.

Из этого соотношения следует, что линии плотности тока и линии напряженности при постоянном токе совпадают, а, следовательно, распределение полей можно изучать по распределению тока (метод электролитической ванны).

8.Закон Ома в интегральной форме

Наряду с удельной электропроводностью, вводят понятие удельного сопротивления.

Сила тока I вдоль проводника не изменяется.

Интеграл в левой части назовем сопротивлением проводника между точками 1 и 2.

– напряжение между точками электрической цепи.

 – закон Ома в интегральной форме.

9.Сопротивление и проводимость

Сопротивление зависит от геометрии и от вещества, из которого сделан проводник.

Для цилиндрического проводника одинакового поперечного сечения оно вычисляется особенно просто.

Измерив сопротивление, можно вычислить ёмкость и наоборот.

Данное устройство иногда называется конденсатором с утечкой.

По физическому смыслу, удельное сопротивление – это сопротивление куба вещества с ребром 1 м, если подводящие провода подключены к центрам противоположных граней.

Приведем таблицу удельных сопротивлений

Медь 1,72·10-8Ом·м
Серебро 1,6·10-8Ом·м
Алюминий 2,6·10-8Ом·м
Свинец 2,0·10-6Ом·м
Графит 3·10-5Ом·м
Германий 0,6Ом·м
Стекло 10+9Ом·м

10.Зависимость сопротивления от температуры

Зависимость сопротивления достаточно сложная, поэтому будем говорить о зависимости удельного сопротивления от температуры.

Для характеристики этой зависимости вводят понятие температурного коэффициента.

В небольшом диапазоне температур можно считать, что α=const.

гдеρ0 – удельное сопротивление при температуре Т0.

Если считать геометрию проводника неизменной, то

Приведем таблицу температурных коэффициентов

Медь 0,0043
Серебро 0,0040
Графит -0,005
Стекло -0,1

Температурный коэффициент сопротивления (ТКС) может быть положительным или отрицательным.

Кроме того, может наблюдаться явление сверхпроводимости, т.е. падение до нуля сопротивления при сверхнизких температурах. Явление объясняется с квантовых позиций.

11.Закон Джоуля – Ленца

При протекании по проводнику электрического тока, совершается работа.

Здесь q – прошедший заряд.

Если нет сторонних потерь энергии, то эта работа полностью переходит в тепло:

(количество теплоты)

Q – тепло Джоуля – Ленца.

В общем виде это выражение выглядит следующим образом:

Это закон Джоуля – Ленца в интегральной форме.

Рассмотрим тепло, выделяющееся в бесконечно малом объеме проводника за бесконечно малое время dt.

–закон Джоуля – Ленца в дифференциальной форме.

Источник: https://tsput.ru/res/fizika/1/KR_ELEC/l11.htm

Законы постоянного тока – FIZI4KA

ЕГЭ 2018 по физике ›

Электрический ток – это упорядоченное движение заряженных частиц.

Условия существования электрического тока в проводнике:

  • наличие свободных заряженных частиц;
  • наличие электрического поля.

Напряженность электрического поля должна быть постоянной.

Цепь постоянного тока должна быть замкнутой.

Важно!
Тепловое движение заряженных частиц нельзя назвать электрическим током, так как оно беспорядочное.

Электрический ток можно обнаружить по его действиям:

  • тепловому – при протекании тока проводник нагревается;
  • химическому – изменяется состав вещества при прохождении электрического тока (электролиз);
  • магнитному – электрический ток создает магнитное поле.

За направление тока принимают направление движения положительно заряженной частицы.

Сила тока – это скалярная физическая величина, равная отношению заряда, прошедшего через поперечное сечение проводника, ко времени, за которое этот заряд переносится.

Обозначение – ​\( I \)​, единица измерения в СИ – ампер (А) (является основной).

Вычисляется по формуле:

Если за одинаковые промежутки времени через поперечное сечение проводника проходит одинаковый заряд, то ток постоянный.

Для измерения силы тока используют амперметр.

Условное обозначение на схемах:

Амперметр – измерительный прибор для определения силы тока в электрической цепи.

При измерении силы тока амперметр включают в цепь последовательно с тем прибором, силу тока в котором измеряют, и с соблюдением полярности. Клемму амперметра со знаком «+» нужно обязательно соединять с проводом, идущим от положительного полюса источника тока.

Для того чтобы включение амперметра не влияло на величину измеряемого тока, его сопротивление по сравнению с сопротивлением нагрузки должно быть как можно меньшим. Каждый амперметр рассчитывается на некоторое определенное максимальное значение измеряемой величины. Но возникают ситуации, когда необходимо выполнить измерение силы тока больше предельно допустимого значения силы тока.

Для этого параллельно амперметру присоединяют проводник (шунт), по которому проходит часть измеряемого тока. Значение сопротивления этого проводника рассчитывается так, чтобы сила тока, проходящего через амперметр, не превышала его максимально допустимого значения.

Сопротивление шунта рассчитывается по формуле:

где ​\( I_ц \)​ – сила тока в цепи, \( I_а \) – максимально допустимая для данного амперметра сила тока, \( R_а \) – сопротивление амперметра, ​\( n=\frac{I_ц}{I_а} \)​.

При этом цена деления прибора увеличивается в n раз, а точность измерений во столько же раз уменьшается.

Работающим с электрическими цепями надо знать, что для человеческого организма безопасной считается сила тока до 1 мА. Сила тока больше 100 мА приводит к серьезным поражениям организма.

Постоянный электрический ток. Напряжение

В проводнике, по которому протекает ток, заряды движутся под действием сил электростатического поля. Работу электростатических сил характеризуют разностью потенциалов или напряжением.

Электрическое напряжение – скалярная физическая величина, равная отношению работы по перемещению электрического заряда между двумя точками цепи к величине этого заряда.

Обозначение – ​\( U \)​, единица измерения в СИ – вольт (В).

Формула для вычисления:

Напряжение равно разности потенциалов только в том случае, если рассматриваемый участок цепи не содержит источник тока (ЭДС = 0).

Измеряют напряжение вольтметром.

Изображение вольтметра на схеме:

При измерении напряжения вольтметр включают в цепь параллельно с тем прибором, напряжение на котором измеряют, и с соблюдением полярности. Клемму вольтметра со знаком «+» нужно обязательно соединять с проводом, идущим от положительного полюса источника тока. Для того чтобы включение вольтметра не влияло на измерение напряжения, его сопротивление должно быть большим.

Для измерения напряжения больше, чем допустимое для данного вольтметра, используют добавочное сопротивление – резистор, включаемый последовательно с вольтметром.

Величина добавочного сопротивления рассчитывается по формуле:

где ​\( U \)​ – напряжение, которое нужно измерить, ​\( U_В \)​ – напряжение, на которое рассчитан вольтметр, ​\( n=\frac{U}{U_В} \)​, ​\( R_В \)​ – сопротивление вольтметра.

При этом цена деления прибора увеличивается в ​\( n \)​ раз, а точность измерений во столько же раз уменьшается.

Закон Ома для участка цепи

Взаимосвязь между силой тока, протекающей по проводнику, и напряжением на его концах была экспериментально установлена Г. Омом и носит название закона Ома для участка цепи.

Закон Ома для участка цепи

Сила тока прямо пропорциональна напряжению на концах участка и обратно пропорциональна его сопротивлению:

График зависимости силы тока от напряжения называется вольт-амперной характеристикой. Из закона Ома для участка цепи следует, что при постоянном сопротивлении сила тока прямо пропорциональна напряжению. Следовательно, вольт-амперная характеристика для металлического проводника представляет собой прямую линию, проходящую через начало координат.

Проводник с такими свойствами называется резистором.

Угол наклона графика к оси напряжений зависит от сопротивления проводника. Тангенс угла наклона графика равен проводимости резистора.

ЭТО ИНТЕРЕСНО:  Что такое хар ка

Электрическое сопротивление. Удельное сопротивление вещества

Электрическое сопротивление – свойство материала проводника препятствовать прохождению через него электрического тока.

Обозначение – ​\( R \)​, единица измерения в СИ – Ом.

Объяснить наличие сопротивления можно на основе строения металлических проводников. Свободные электроны при движении по проводнику встречают на своем пути ионы кристаллической решетки и другие электроны и, взаимодействуя с ними, неизбежно теряют часть своей энергии. Различные металлические проводники, имеющие различное атомное строение, оказывают различное сопротивление электрическому току.

Чем больше сопротивление проводника, тем хуже он проводит электрический ток.

Сопротивление различных проводников зависит от материала, из которого они изготовлены, их длины, геометрической формы и температуры. Для характеристики электрического сопротивления различных материалов введено понятие так называемого удельного сопротивления.

Удельным сопротивлением называется сопротивление проводника длиной 1 м и площадью поперечного сечения 1 м2.

Обозначение – ​\( \rho \)​, единица измерения в СИ – Ом·м.

Каждый материал, из которого изготовляется проводник, обладает своим удельным сопротивлением.

Например, удельное сопротивление меди равно 1,7·10-8 Ом·м, т. е. медный проводник длиной 1 м и сечением 1 м2 обладает сопротивлением 1,7·10-8 Ом. На практике часто используют единицу удельного сопротивления (Ом·мм2)/м.

Электрическое сопротивление проводника прямо пропорционально длине проводника и обратно пропорционально площади поперечного сечения проводника.

Формула для вычисления:

Сопротивление проводника увеличивается с ростом температуры. Удельное сопротивление зависит от температуры:

где ​\( \rho_0 \)​ – удельное сопротивление при ​\( T_0 \)​ = 293 К (20°С), ​\( \Delta T=T-T_0 \)​, ​\( \alpha \)​ – температурный коэффициент сопротивления.

Единица измерения температурного коэффициента сопротивления – К-1.

При нагревании увеличивается интенсивность движения частиц вещества. Это создает трудности для направленного движения электронов. Увеличивается число столкновений свободных электронов с ионами кристаллической решетки.

Свойство изменения сопротивления при изменении температуры используется в термометрах сопротивления. Эти приборы могут измерять температуру, основываясь на зависимости сопротивления от температуры. У термометров сопротивления высокая точность измерений.

Электродвижущая сила. Внутреннее сопротивление источника тока

Для создания электрического поля в проводниках используют источник тока. Внутри источника тока происходит перераспределение зарядов, в результате которого на полюсах источника возникает избыток зарядов разных знаков.

Виды источников тока:

  • электрофорная машина;
  • термопара;
  • фотоэлемент;
  • аккумулятор;
  • гальванический элемент.

Сторонними называются силы неэлектрической природы, действующие внутри источника тока.

Когда проводник соединяют с полюсами источника, то на внешнем участке цепи заряженные частицы движутся под действием электростатической силы. А внутри источника на заряды действуют сторонние и электростатические силы.

Под действием этих сил внутри источника происходит перемещение положительных зарядов от отрицательного полюса источника к положительному. Это перемещение происходит до тех пор, пока сторонние силы не станут равными электростатическим. При переносе заряда эти силы совершают работу. Работа сторонних сил по перемещению заряда компенсирует потери энергии заряженными частицами при их движении по цепи.

Электродвижущей силой (ЭДС) называется отношение работы сторонних сил по перемещению положительного заряда к величине этого заряда.

Источник: https://fizi4ka.ru/egje-2018-po-fizike/zakony-postojannogo-toka.html

Сила тока — определение и физический смысл

Мы помним из уроков физики средней школы основной постулат. Выглядит он следующим образом.

Силой тока называется величина, которая количественно характеризует упорядоченное движение заряженных частиц

Чтобы понять это определение, нужно для начала выяснить, что такое «упорядоченное движение заряженных частиц». Это как раз и есть электрический ток. Таким образом, сила тока позволяет численно измерить электрический ток.

Например, заданное количество электрических зарядов может проходить по проводнику в течение 1 часа или 1 секунды. Понятно, что во втором случае интенсивность прохождения зарядов будет гораздо больше. Соответственно и сила тока будет больше. Так как в международной системе СИ единицей времени принято считать 1 секунду, то приходим к определению силы тока.

Сила тока — это количество электричества, проходящее через поперечное сечение проводника за одну секунду.

Единица силы тока

Единицей измерения силы тока является Ампер. Ампер — сила электрического тока, при котором через поперечное сечение проводника каждую секунду проходит количество электричества, равное одному кулону: 1 ампер = 1 кулон/1 секунду.

Дополнительные единицы измерения, наиболее часто встречающиеся в энергетике:

  • 1 мА (миллиампер) = 0,001 А;
  • 1 мкА (микроампер) = 0,000001 А;
  • 1 кА (килоампер) = 1000 А.

Теперь мы знаем, в чем измеряется сила тока.

Измерение силы тока

Для измерения силы тока служит прибор Амперметр. Для измерения очень малых сил тока применяются миллиамперметры и микроамперметры.

Условные обозначения амперметра и миллиамперметра

Для того, чтобы измерит силу тока нужно включить амперметр в разрыв цепи, то есть последовательно. Измеряемый ток проходит от источника через амперметр и приемник. Стрелка амперметра показывает силу тока в цепи. Где именно включить амперметр в цепи — безразлично, так как сила тока в простой замкнутой цепи (без разветвлений) будет одинакова во всех точках цепи.

Прибор амперметр

В технике встречаются очень большие силы тока (тысячи ампер) и очень маленькие (миллионные доли ампера).

Например, сила тока электрической плитки примерно 4 — 5 ампер, лампы накаливания — от 0,3 до 4 ампер (и больше). Ток, проходящий через фотоэлементы, составляет всего несколько микроампер. В главных проводах подстанций, дающих электроэнергию для трамвайной сети, сила тока достигает тысяч ампер.

Источник: https://linijaopory.ru/sila-toka-opredelenie-i-fizicheskijj-smysl/

Постоянный электрический ток: определение, механизм, характеристики

Определение 1

Постоянный ток – это упорядоченное движение заряженных частиц, движущихся в одном направлении.

По теории данные заряженные частицы относят к носителям тока. В проводниках и полупроводниках такими носителями являются электроны, в электролитах – заряженные ионы, в газах – электроны и ионы. Металлы характеризуются перемещением только электронов. Отсюда следует, что электрический ток в них – это движение электронов проводимости.

Результат прохождения электрического тока в металлах и электропроводящих растворах заметно отличается. Наличие химических процессов в металлах при протекании тока отсутствует. В электролитах под воздействием тока происходит выделение ионов вещества на электродах. Различие заключается в отличии носителей зарядов металла и электролита. В металлах – это свободные электроны, отделившиеся от атомов, в растворах – ионы, атомы или их группы с зарядами.

Необходимые условия существования электрического тока

Первое необходимое условие существования электрического тока любого вещества – наличие носителей заряда.

Для равновесного состояния зарядов необходимо равнение нулю разности потенциалов между любыми точками проводника. При нарушении данного условия, заряд не сможет переместиться. Отсюда следует, что второе необходимое условие существования электрического тока в проводнике – создание напряжения между некоторыми точками.

Определение 2

Упорядоченное движение свободных зарядов, возникающее в проводнике как результат воздействия электрического поля, называют током проводимости.

Такое движение возможно при перемещении в пространстве заряженного проводника или диэлектрика. Подобный электрический ток получил название конвекционного.

Механизм осуществления постоянного тока

Для постоянного прохождения тока в проводнике следует подсоединить к проводнику или их совокупности устройство, в котором постоянно происходит процесс разделения электрических зарядов для поддержания напряжения в цепи. Данный механизм получил название источника тока (генератора).

Силы, разделяющие заряды, называют сторонними. Они характеризуются неэлектрическим происхождением, действуют внутри источника. При разделении зарядов сторонние силы способны создать разность потенциалов между концами цепи.

Если электрический заряд перемещается по замкнутой цепи, то работа электростатических сил равняется нулю. Отсюда следует, что суммарная работа сил A, действующих на заряд, равна работе сторонних Ast. Определение физической величины, характеризующей источник тока, ЭДС источника ε запишется как:

ε=Aq (1), где значение q подразумевает положительный заряд. Его движение происходит по замкнутому контуру. ЭДС – это не сила. Единица измерения ε=В.

Природа сторонних сил различна. В гальваническом элементе они являются результатом электрохимических процессов. В машине с постоянным током такой силой является сила Лоренца.

Основные характеристики электрического тока

Условно принято считать направление тока за направление движения положительных частиц. Отсюда следует, что направление тока в металлах характеризуется противоположным направлением относительно направления движения частиц.

Электрический ток обладает силой тока.

Определение 3

Сила тока I – скалярная величина, равняется производной от заряда q по времени для тока, который проходит через поверхность S:

I=dqdt (2).

Ток может быть постоянным и переменным. При неизменной силе тока  с его направлением по времени ток называют постоянным, а выражение силы тока для него примет вид:

I=qt (3), где сила тока рассматривается в качестве заряда, проходящего через поверхность S в единицу времени.

По системе СИ основная единица измерения силы тока – Ампер (А).

1 A=1 Кл1 с.

Определение 4

Плотность – это векторная локальная характеристика. Вектор плотности тока j→способен показывать, каким образом распределяется ток по сечению S. Его направление идет в сторону, куда движутся положительные заряды.

Значение вектора плотности тока по модулю равно:

Источник: https://zaochnik.com/spravochnik/fizika/postojannyj-elektricheskij-tok/postojannyj-elektricheskij-tok-opredelenie/

Понравилась статья? Поделиться с друзьями:
220 вольт