Диэлектрики: что это такое, примеры
Определение 1
Диэлектриками называют вещества, не обладающие способностью проводить электрический ток.
Стоит отметить, что данное определение лишь приблизительно выражает физический смысл приведенного понятия.
Абсолютных изоляторов, то есть веществ, которые совсем не проводят ток, в природе не существует. Диэлектрики по сравнению с проводниками в 1015−1020 раз хуже проводят ток. Данный факт основывается на том, что в диэлектриках отсутствуют свободные заряды.
Что такое диэлектрики и их примеры
Определение 2
Если диэлектрик поместить в электрическое поле, то, как диэлектрик, так и само поле значительно изменятся. В диэлектриках, в которых до контакта с полем не было заряда, возникают электрические заряды. Это явление объясняется процессом поляризации вещества, другими словами, в поле диэлектрик обретает электрические полюсы. Возникающие при этом заряды называются поляризационными.
Разделить такие заряды невозможно, чем они существенно отличаются от индукционных зарядов в проводниках. Данное отличие основывается на том факте, что в металлах присутствуют электроны, имеющие возможность перемещаться на относительно большие расстояния. В диэлектриках положительные и отрицательные заряды связаны между собой, и их перемещение ограничено пределами одной молекулы, что является крайне малым расстоянием.
Диэлектрики состоят либо из нейтральных молекул, либо из закрепленных в положении равновесия, к примеру, в узлах кристаллической решетки заряженных ионов. Ионные кристаллические решетки могут быть разбиты на, в целом, нейтральные «элементарные ячейки».
Действие электрического поля на заряды, принадлежащие диэлектрику, провоцирует лишь легкое смещение относительно изначального положения, тогда как заряды проводников, испытывающие такое же влияние, срываются с места. В условиях отсутствующего электрического поля диэлектрик может быть условно представлен в виде совокупности молекул, в каждой из которых положительные и отрицательные заряды равные по величине распределены по всему объему вещества.
Определение 3
В процессе поляризации заряды каждой отдельной молекулы диэлектрика смещаются в противоположные ее стороны. Соответственно, одна часть молекулы становиться положительно заряженной, а другой — отрицательно, что, в общем, дает возможность заявить: молекула превращается в электрический диполь.
Равнодействующая электрических сил, в однородном поле оказывающих влияние на нейтральную молекулу диэлектрика, эквивалентна нулю. Этот факт основывается на том, что центр тяжести молекулы не передвигается ни в одну из сторон. Молекула просто претерпевает деформирование.
Определение 4
Существуют такие диэлектрики, в которых в условиях отсутствующего электрического поля молекулы имеют дипольный момент (полярные молекулы).
В случае, когда поле отсутствует, такие молекулы, принимающие непосредственное участие в тепловом движении, ориентированы беспорядочно. Если же диэлектрик находится в поле, молекулы, в основном, ориентируются по его направлению. Соответственно, диэлектрик проходит процесс поляризации.
Определение 5
У симметричных молекул, таких как, к примеру, O2, N2, в отсутствие поля центры тяжести отрицательных и положительных зарядов одинаковы. По этой причине собственного дипольного момента у молекул нет (неполярные молекулы). У несимметричных же молекул (возьмем в качестве примера H2O, CO) центры тяжести сдвинуты друг относительно друга, в результате чего молекулы имеют дипольный момент и носят название полярных.
Также существуют диэлектрические или же ионные кристаллы, которые формируются при помощи ионов с противоположным знаком. Такой кристалл состоит из пары “вдвинутых” друг в друга кристаллических решеток, одна из которых является положительной, а вторая — отрицательной. В целом кристалл условно можно принять за подобие гигантской молекулы.
Процесс наложения электрического поля провоцирует сдвиг одной решеток относительно друг друга, вследствие чего и происходит поляризация ионных кристаллов. Существует также тип поляризованных без участия поля кристаллов. При дальнейшем исследовании поведения диэлектриков в электрических полях механизм возникновения поляризации значения иметь не будет.
Существенным фактом является только то, что поляризация диэлектрика происходит через появление некомпенсированных макроскопических зарядов. Значения объемной плотность зарядов (ρ) и поверхностной плотности (σ) неполяризованного диэлектрика равняются нулю. После же процесса поляризации σ≠0, а в некоторых случаях и ρ≠0. Поляризация приводит к появлению в тонком поверхностном слое диэлектрика избытка связанных зарядов с одним знаком.
В том случае, если ортогональная или же перпендикулярная часть напряженности поля En→≠0 на приведенном участке, то в результате влияния поля заряды с одним знаком уходят внутрь, а с другим, наоборот, выходят наружу.
Вектор поляризации диэлектрика
Определение 6
Поляризованность P→ или, другими словами, вектор поляризованности характеризует степень поляризации диэлектрика:
P→=∆ρ→∆V,
где ∆ρ представляет собой дипольный момент элемента диэлектрика.
Определение 7
В условиях неполярных молекул вектор поляризованности может быть определен в следующем виде:
P→=1∆V∑∆Vρi→=Nρ0→,
где сложение идет относительно всех молекул в объеме △V. N — концентрация молекул,
ρ0→ является индуцированным дипольным моментом (Он один и тот же у всех молекул). ρ0→E→.
Определение 8
Формула поляризованности в условиях полярных молекул принимает вид следующего выражения:
P→=1∆V∑∆Vρi→=Np→,
в котором P→ представляет собой среднее значение дипольных моментов, которые равнозначны по модулю, но обладают разными направлениями.
В изотропных диэлектриках средние дипольные моменты по направлению идентичны напряженности внешнего электрического поля. У диэлектриков с молекулами полярного типа, вклад в поляризованность от наведенных зарядов значительно ниже вклада от переориентации поля.
Определение 9
Ионная решеточная поляризации может быть описана следующей формулой: P→=1∆V∑∆Vρi→=Np→.
В большей части случаев подобная поляризация является анизотропной.
Пример 1
Если представить плоский конденсатор, который заполнен диэлектриком так, как это проиллюстрировано на рисунке 1, то на принадлежащей ему левой обкладке расположен положительный заряд, а на правой — отрицательный.
По причине того факта, что разноименные заряды притягиваются друг к другу, у положительной обкладки на поверхности диэлектрика появится отрицательный заряд, а у правой, то есть отрицательной – положительный заряд диэлектрика.
Выходит, что поле, формирующееся поляризационными зарядами, имеет противоположное направлению поля направление, которое создают обкладки, соответственно, диэлектрик ослабляет поле.
Рисунок 1
+q,−q представляют собой заряды на обкладках конденсатора.
E→ является напряженностью поля, которое формируется обкладками конденсатора.
−q′, +q′- это заряды диэлектрика.
Источник: https://zaochnik.com/spravochnik/fizika/elektricheskoe-pole/dielektriki/
Диэлектрик в конденсаторе
Физика > Конденсаторы с диэлектриками
Как выглядит конденсатор, заполненный диэлектриком: применение диэлектрика между пластинами, емкость конденсатора и формула, сопротивление ионизации.
Диэлектрик вступает в частичное сопротивление к электрическому полю конденсатора. Он может увеличить емкость и избавить пластины от касания.
Задача обучения
- Охарактеризовать поведение диэлектрического материала в электрическом поле конденсатора.
Основные пункты
- Если применяется диэлектрик в конденсаторе, то помещенный между пластинами материал будет поляризоваться, чтобы сопротивляться полю.
- Емкость конденсатора с параллельной пластиной вычисляется по формуле: c = εA/d (ε – диэлектрическая проницаемость, A – площадь пластин конденсатора, а d – толщина диэлектрика).
- В качестве диэлектрика выбирают материал со способностью противостоять ионизации.
Термины
- Емкость – умение электрической цепи сберегать заряд.
- Диэлектрик – изолирующий или непроводящий материал.
- Конденсатор – электронная составляющая, способная сберечь электрический заряд.
Чтобы конденсатор сохранил заряд, цепь между двумя сторонами должна прерваться. Это может произойти из-за вакуума или диэлектрика.
Когда мы используем конденсатор, заполненный диэлектриком, то материал между параллельными пластинами конденсатора начинает поляризоваться. Часть возле положительного конца обретет избыток отрицательного заряда, а часть возле отрицательного – избыток положительного. В итоге, подобное перераспределение формирует электрическое поле, вступающее в противостояние созданному конденсатором полю. Ниже представлена схема диэлектрика между пластинами конденсатора.
Заряды в линии диэлектрического материала противостоят зарядам пластин. Между ними формируется электрическое поле
Именно поэтому, созданное конденсатором чистое поле будет частично сокращаться вместе с разностью потенциалов. Но диэлектрик не позволяет пластинам вступать в прямой контакт. Если присутствует высокая проницаемость, то увеличивается емкость для любого конкретного напряжения. Емкость вычисляется по формуле:
c = εA/d (ε – диэлектрическая проницаемость, A – площадь пластин конденсатора, а d – толщина диэлектрика).
В качестве диэлектриков выбирают материалы со способностью сопротивляться ионизации. Чем выше устойчивость, тем лучше всего он подходит для работы с высоким напряжением. У каждого материала есть точка пробоя диэлектрика, где разность потенциалов становится крайне высокой для изоляции. Тогда она ионизирует и пропускает ток.
Читайте нас на Яндекс.Дзен
Источник: https://v-kosmose.com/fizika/kondensatoryi-s-dielektrikami/
Что такое проводники, полупроводники и диэлектрики
В электричестве выделяют три основных группы материалов – это проводники, полупроводники и диэлектрики. Основным их отличием является возможность проводить ток. В этой статье мы рассмотрим, чем отличаются эти виды материалов и как они ведут себя в электрическом поле.
Что такое проводник
Вещество, в котором присутствуют свободные носители зарядов, называют проводником. Движение свободных носителей называют тепловым. Основной характеристикой проводника является его сопротивление (R) или проводимость (G) – величина обратная сопротивлению.
G=1/R
Говоря простыми словами – проводник проводит ток.
К таким веществам можно отнести металлы, но если говорить о неметаллах то, например, углерод – отличный проводник, нашел применение в скользящих контактах, например, щетки электродвигателя. Влажная почва, растворы солей и кислот в воде, тело человека – тоже проводит ток, но их электропроводность зачастую меньше, чем у меди или алюминия, например.
Металлы являются отличными проводниками, как раз таки благодаря большому числу свободных носителей зарядов в их структуре. Под воздействием электрического поля заряды начинают перемещаться, а также перераспределяться, наблюдается явление электростатической индукции.
Что такое диэлектрик
Диэлектриками называют вещества, которые не проводят ток, или проводят, но очень плохо. В них нет свободных носителей зарядов, потому что связь частиц атома достаточно сильная, для образования свободных носителей, поэтому под воздействием электрического поля тока в диэлектрике не возникает.
Газ, стекло, керамика, фарфор, некоторые смолы, текстолит, карболит, дистиллированная вода, сухая древесина, резина – являются диэлектриками и не проводят электрический ток. В быту диэлектрики встречаются повсеместно, например, из них делаются корпуса электроприборов, электрические выключатели, корпуса вилок, розеток и прочее. В линиях электропередач изоляторы выполняются из диэлектриков.
Однако, при наличии определенных факторов, например повышенный уровень влажности, напряженность электрического поля выше допустимого значения и прочее – приводят к тому, что материал начинает терять свои диэлектрические функции и становится проводником. Иногда вы можете слышать фразы типа «пробой изолятора» — это и есть описанное выше явление.
https://www.youtube.com/watch?v=BcN-08nLOXs
Если сказать кратко, то основными свойствами диэлектрика в сфере электричества являются электроизоляционные. Именно способность препятствовать протеканию тока защищает человека от электротравматизма и прочих неприятностей. Основной характеристикой диэлектрика является электрическая прочность – величина равная напряжению его пробоя.
Что такое полупроводник
Полупроводник проводит электрический ток, но не так как металлы, а при соблюдении определенных условий – сообщении веществу энергии в нужных количествах.
Это связано с тем, что свободных носителей (дырок и электронов) зарядов слишком мало или их вовсе нет, но если приложить какое-то количество энергии – они появятся. Энергия может быть различных форм – электрической, тепловой.
Также свободные дырки и электроны в полупроводнике могут возникать под воздействием излучений, например в УФ-спектре.
Где применяются полупроводники? Из них изготавливают транзисторы, тиристоры, диоды, микросхемы, светодиоды и прочее. К таким материалам относят кремний, германий, смеси разных материалов, например арсенид-галия, селен, мышьяк.
Чтобы понять, почему полупроводник проводит электрический ток, но не так как металлы, нужно рассматривать эти материалы с точки зрения зонной теории.
Зонная теория
Зонная теория описывает наличие или отсутствие свободных носителей зарядов, относительно определенных энергетических слоев. Энергетическим уровнем или слоем называют количество энергии электронов (ядер атомов, молекул – простых частиц), их измеряют в величине Электронвольты (ЭВ).
На изображении ниже показаны три вида материалов с их энергетическими уровнями:
Обратите внимание, что у проводника энергетические уровни от валентной зоны до зоны проводимости объединены в неразрывную диаграмму. Зона проводимости и валентная зоны накладываются друг на друга, это называется зоной перекрытия. В зависимости от наличия электрического поля (напряжения), температуры и прочих факторов количество электронов может изменяться. Благодаря вышеописанному, электроны могут передвигаться в проводниках, даже если сообщить им какое-то минимальное количество энергии.
У полупроводника между зоной валентности и зоной проводимости присутствует определенная запрещенная. Ширина запрещенной зоны описывает, какое количество энергии нужно сообщить полупроводнику, чтобы начал протекать ток.
У диэлектрика диаграмма похожа на ту, которая описывает полупроводники, однако отличие лишь в ширине запрещенной зоны – она здесь во много раз большая. Различия обусловлены внутренним строением и вещества.
Мы рассмотрели основные три типа материалов и привели их примеры и особенности. Главным их отличием является способность проводить ток.
Поэтому каждый из них нашел свою сферу применения: проводники используются для передачи электроэнергии, диэлектрики – для изоляции токоведущих частей, полупроводники – для электроники.
Надеемся, предоставленная информация помогла вам понять, что собой представляют проводники, полупроводники и диэлектрики в электрическом поле, а также в чем их отличие между собой.
Напоследок рекомендуем просмотреть полезное видео по теме:
Наверняка вы не знаете:
Источник: https://samelectrik.ru/chto-takoe-provodniki-poluprovodniki-i-dielektriki.html