Токи фуко что это такое

Токи Фуко

токи фуко что это такое

Определение 1

Токами Фуко или же вихревыми токами называют обладающие индукционной природой токи, которые возникают в массивных проводниках, находящихся в переменном магнитном поле.

Замкнутые цепи вихревых токов зарождаются в глубине самого проводника. Значение электросопротивления массивного проводника представляет из себя довольно малую величину, соответственно, токи Фуко могут приобретать большие значения. Форма и свойства материала проводника, направление переменного магнитного поля и скорость изменения магнитного потока являются величинами, от которых зависит сила вихревых токов.

Распределение токов Фуко в проводнике может быть крайне сложным. Количество тепла, которое излучается за 1с токами Фуко пропорционально квадрату частоты изменения магнитного поля. Исходя из закона Ленца, можно заявить, что токи Фуко протекают по таким направлениям, чтобы своим воздействием устранить вызывающую их причину.

Таким образом, если проводник находится в движении в области магнитного поля, то он должен быть подвержен вызванному взаимодействием токов Фуко и магнитного поля сильному торможению.

Пример 1

Рассмотрим в качестве примера ситуацию с возникновением оков Фуко. Медный диск диаметром 5 см и толщиной 6мм падает в узком зазоре между полюсами электромагнита. Если электромагнит отключен, диск с высокой скоростью падает. Включим электромагнит. Поле должно быть довольно большим, около Т 0,5 Тл. Падение диска замедлится и будет похоже на движение в крайне вязкой среде.

Использование токов Фуко

Токи Фуко занимают важное место в процессе работы приводящегося в движение вращательного типа магнитным полем ротора асинхронного двигателя. Без них функционирование двигателя попросту будет невозможным. Токи Фуко применяют при демпфировании подвижных частей гальванометров, сейсмографов и целого списка иных устройств.

Так, на подвижную часть прибора устанавливается пластинка — проводник в виде сектора. Ее вводят в промежуток между полюсами сильного постоянного магнита. При движении пластинки, в ней возникают токи Фуко, что провоцирует торможение системы. Стоит учитывать, что торможение проявляется только в случае движения секторообразного проводника.

Соответственно, успокаивающий прибор такого рода не препятствует точному достижению системы состояния равновесия.

Теплота, излучающаяся токами Фуко, применяется в процессах нагрева. Таким образом, плавка металлов, в которой используются токи Фуко, является более выгодной, чем плавка при помощи иных методов разогрева. Индукционная печь, использующая такой метод, представляет собой катушку, по которой протекает ток высокой частоты и большой силы.

Внутри катушки распологают проводящее тело, в котором возникают разогревающие вещество до состояния плавления вихревые токи большой интенсивности. Так происходит плавление металлов в условиях вакуума, позволяющее получать материалы высокой чистоты.

При применении токов Фуко с целью обезгаживания производят прогрев внутренних металлических элементов вакуумных конструкций.

Проблемы, которые вызывают вихревые токи. Скин — эффект

Токи Фуко не всегда представляют собой полезное явление.

Определение 2

Вихревые токи — это токи проводимости, из-за чего они рассеивают часть энергии в виде джоулевой теплоты.

Такая энергия, к примеру, в роторе асинхронного двигателя, обычно изготавливаемого из ферромагнетиков, разогревает сердечники, чем ухудшает их характеристики. Чтобы избежать данного явления, сердечники производят в виде тонких пластин, которые отделяются тонкими слоями изолятора.

Пластины устанавливают таким образом, чтобы токи Фуко были направлены поперек них. В случае малой толщины пластин вихревые токи обладают небольшой объемной плотностью.

С появлением ферритов и веществ с большим магнитосопротивлением появилась возможность изготавливать сердечники сплошными.

Определение 3

Вихревые токи наводятся в проводниках, в которых протекают переменные токи. Причем токи Фуко всегда направлены таким образом, что ослабляют ток внутри провода и усиливают его около поверхности. Соответственно, изменяющийся с высокой частотой ток распределен по сечению провода неравномерно. Данное явление называется скин — эффектом (поверхностным эффектом).

По причине такого явления внутренняя часть проводника становится бесполезной и в цепях с большой частотой в качестве проводников применяют трубки. Скин — эффект может быть использован для разогрева поверхностного слоя металла, что позволяет применять данное явление в процессе закалки металла. Также стоит отметить, что, изменяя частоту поля, можно производить закалку на любой необходимой глубине.

Определение 4

Приближенные формулы, которыми может быть описан скин-эффект в однородном цилиндрическом проводнике:

RwR0=1+k43, при k

Источник: http://zaochnik.com/spravochnik/fizika/magnitnoe-pole/toki-fuko/

Токи фуко википедия – Токи Фуко

токи фуко что это такое
Определение 1

Токами Фуко или же вихревыми токами называют обладающие индукционной природой токи, которые возникают в массивных проводниках, находящихся в переменном магнитном поле.

Замкнутые цепи вихревых токов зарождаются в глубине самого проводника. Значение электросопротивления массивного проводника представляет из себя довольно малую величину, соответственно, токи Фуко могут приобретать большие значения. Форма и свойства материала проводника, направление переменного магнитного поля и скорость изменения магнитного потока являются величинами, от которых зависит сила вихревых токов.

Распределение токов Фуко в проводнике может быть крайне сложным. Количество тепла, которое излучается за 1с токами Фуко пропорционально квадрату частоты изменения магнитного поля. Исходя из закона Ленца, можно заявить, что токи Фуко протекают по таким направлениям, чтобы своим воздействием устранить вызывающую их причину.

Таким образом, если проводник находится в движении в области магнитного поля, то он должен быть подвержен вызванному взаимодействием токов Фуко и магнитного поля сильному торможению.

Пример 1

Рассмотрим в качестве примера ситуацию с возникновением оков Фуко. Медный диск диаметром 5 см и толщиной 6мм падает в узком зазоре между полюсами электромагнита. Если электромагнит отключен, диск с высокой скоростью падает. Включим электромагнит. Поле должно быть довольно большим, около Т0,5 Тл. Падение диска замедлится и будет похоже на движение в крайне вязкой среде.

Вихревые токи Фуко: причины возникновения и применение

В электричестве есть целый ряд явлений, которые нужно знать специалистам. Хоть и не вся информация может пригодиться в повседневной практике, но иногда поможет понять причину какой либо проблемы. Вихревые токи послужили причиной становления некоторых технологических ухищрений при изготовлении электрических машин и даже стали основой для принципа работы некоторых изобретений. Давайте разберемся, что такое вихревые токи Фуко и как они возникают.

Краткое определение

Вихревые токи — это токи, которые протекают в проводниках под воздействием на них переменного магнитного поля. Не обязательно поле должно изменяться, может и тело двигаться в магнитном поле, все равно в нем начнёт течь ток.

Нельзя найти реальную траекторию движения токов для их учёта, ток протекает там, где находит путь с наименьшим сопротивлением. Вихревые токи всегда протекают по замкнутому контуру. Основные условия для его возникновения — нахождение предмета в переменном магнитном поле или его перемещение относительно поля.

История открытия

В 1824 году учёный Д.Ф. Араго проводил эксперимент. Он на одной оси смонтировал медный диск, над ним расположил магнитную стрелку. При вращении магнитной стрелки диск начинал двигаться. Так впервые наблюдали явление вихревых токов. Диск начинал вращаться из-за того, что из-за протекания токов появлялось магнитное поле, которое взаимодействовало со стрелкой. Это назвали, тогда как явление Араго.

ЭТО ИНТЕРЕСНО:  Как сделать стробоскопы своими руками

Спустя пару лет М. Фарадей, открывший закон электромагнитной индукции, объяснял это явление таким образом: подвижное магнитное поле наводит в диске ток (как в замкнутом контуре) и он взаимодействует с полем стрелки.

Почему второе название — это токи Фуко? Потому что физик Фуко подробно исследовал явление вихревых токов. В ходе своих исследований он сделал великое открытие. Оно заключалось в том, что тела под воздействием вихревых токов нагреваются. С теорией разобрались, теперь мы расскажем о том, где применяются токи Фуко и какие вызывают проблемы.

Источник: https://yato-tools.ru/raznoe/toki-fuko-vikipediya-toki-fuko.html

Что такое вихревые токи и какие меры принимают для их уменьшения

токи фуко что это такое
В электричестве есть целый ряд явлений, которые нужно знать специалистам. Хоть и не вся информация может пригодиться в повседневной практике, но иногда поможет понять причину какой либо проблемы. Вихревые токи послужили причиной становления некоторых технологических ухищрений при изготовлении электрических машин и даже стали основой для принципа работы некоторых изобретений. Давайте разберемся, что такое вихревые токи Фуко и как они возникают.

Токи Фуко: их применение, определение в трансформаторе

Каждый человек, который изучает электродинамику и другие разделы науки об электричестве, сталкивается с таким понятием, как вихревые токи. Что это такое, какие есть свойства вихревых токов, как определить их в трансформаторе? Об этом и другом далее.

Суть явления

Вихревые или токи фуко — это те, которые протекают из-за воздействия переменного магнитного поля. При этом изменяется не само поле, а проводниковое положение данного поля. То есть если будет происходить проводниковое перемещение статичного поля, то в нем все равно будет образовываться энергия.

Токи Фуко

Фуко возникают там, где изменяется переменное магнитное поля и фактически они ничем не отличаются от энергии, идущей по проводам, или вторичных электрических трансформаторных обмотков.

Определение из учебного пособия

Свойства вихревых токов

Стоит отметить, что вихревая энергия не отличается от индукционной проводной. По направлению и силе Фуко зависит от металлического проводникового элемента, от того, в каком направлении идет переменный магнитный поток, какие имеет свойства металл и как изменяется магнитный поток. При этом токовое распределение очень сложное.

В проводниковых объектах, имеющих габаритные объемы, токи бывают большими, из-за чего значительно повышается температура тела.

Токовая энергия способна создавать нагревание проводника для индукционной печи и металлического плавления. Подобно другим индукционным разновидностям, Фуко взаимодействуют с первичным магнитным полем и тормозят индуктивное движение.

Нагревание как одно из свойств

Полезное и вредное действие

Имеют токи фуко полезное и вредное действие. Они нагревают и плавят металлы в области вакуума и демпфера, но в то же время происходят энергопотери в области трансформаторных сердечников и генераторов из-за того, что выделяется большое количество тепла.

Полезное действие индукционных токов

Как определить в трансформаторе

Узнать, где находятся вихревые токи в трансформаторе, несложно. Как правило, они располагаются в трансформаторных сердечниках. Когда замыкаются в сердечниках, то нагревают их и создают энергию. Поскольку появляются в плоскостях, которые перпендикулярны магнитному потоку по характеристике, происходит трансформаторное уменьшение сердечников.

Определение в трансформаторе

Применение

Нашли вихревые токи применение в электромагнитной индукции. Они используются для того, чтобы тормозить вращающиеся массивные детали. Благодаря магнитоиндукционному торможению они также применяются, чтобы успокоить подвижные части электроизмерительных приборов, в частности, чтобы создать противодействующий момент и притормозить подвижную часть электросчетчиков.

Также используются они в магнитном тормозном диске на электрическом счетчике. В ряде случаев применяются в технологических операциях, которые невозможны без применения высоких частот. К примеру, при откачке воздуха из вакуумных приборов и баллонов с газом. Кроме того, они нужны, чтобы полностью обезгаживать арматуру в высокочастотном генераторе.

Применение в проводниках

Способы уменьшения блуждающих токов

Чтобы уменьшить блуждающие фуковые токи, нужно максимальным образом сделать увеличение сопротивления на токовом пути с помощью заполнения дистиллированной водой циркуляционной системы и встраивания изоляционных шлангов трубопроводов у теплового обменника и вентиля.

Стоит отметить, что нахождение их в электромашинах нежелательно из-за нагрева сердечников и создания энергопотери, поскольку по закону Леннца они размагничивают эти устройства. Чтобы уменьшить их вредное воздействие, используется несколько методов.

Так сердечники машин делают из стали и изолируют друг от друга при помощи лаковой пленки, окалины и прочих материалов. Благодаря этому они не распространяются. Кроме того, поперечный вид сечения на каждом отдельном проводнике уменьшает токовую силу.

В некоторых приборах в качестве сердечников используются катушки с отожженой железной проволокой. При этом полоски на них идут параллельно тем линиям, которые расположены на магнитном потоке.

Обратите внимание! Ограничение вихревой энергии происходит изолирующими прокладками, то есть жгуты состоят из отдельных жил, изолированных между собой.

Уменьшение токовой силы

Возможные проблемы

Вихревые виды проводят энергию и рассеивают ее, выделяя джоулевую теплоту. Такая энергия ротора асинхронной двигательной установки готовится из фурромагнетиков и способствует нагреву сердечников.

Чтобы бороться с подобным явлением, сердечники создаются из тонкой стали, покрываются изоляцией и устанавливаются поперек пластин. Если пластины имеют небольшую толщину, они обладают малой объемной плотностью. Благодаря ферритам и веществам, имеющим большое магнитосопротивление, сердечники делаются сплошными. Направление их ослабляет энергию внутри провода.

Вам это будет интересно  Все об законе Ома

В результате он неравномерный. Это явление скин-эффекта или поверхностного эффекта, из-за которого внутренний проводник бесполезен, и в цепях, где есть большая частота, используются проводниковые трубки.

Обратите внимание! Скин-эффект применяется для того, чтобы разогревать поверхностный металл для металлической закалки. При этом закалка может быть проведена на любой глубине.

Проблемы, вызванные индукционными токами

Фуко являются индукционными токами, которые возникают в крупных проводниках сплошного типа. Обозначаются буквой ф. Они имеют свойство нагрева проводников. В результате чего они чаще используются в индукционного типа печах. Важно отметить, что способны генерировать магнитное поле. В этом механизм их работы. В некоторых случаях они полезны, в других нежелательны. В любом случае они используются во многих устройствах.

Источник: https://rusenergetics.ru/ustroistvo/toki-fuko

Применение токов Фуко

Полезное применение вихревые токи нашли в устройстве магнитного тормоза диска электрического счетчика. Вращаясь, диск пересекает магнитные силовые линии постоянного магнита. В плоскости диска возникают вихревые токи, которые, в свою очередь, создают свои магнитные потоки в виде трубочек вокруг вихревого тока. Взаимодействуя с основным полем магнита, эти потоки тормозят диск.

В ряде случаев, применяя вихревые токи, можно использовать технологические операции, которые невозможно применить без токов высокой частоты. Например, при изготовления вакуумных приборов и устройств из баллона необходимо тщательно откачать воздух и иные газы.

Однако в металлической арматуре, находящейся внутри баллона, имеются остатки газа, которые можно удалить только после заваривания баллона.

Для полного обезгаживания арматуры вакуумный прибор помещают в поле высокочастотного генератора, в результате действия вихревых токов арматура нагревается до сотен градусов, остатки газа при этом нейтрализуются.

Вихревые токи находят полезное применение также при индукционной плавке металлов и поверхностной закалке токами высокой частоты.

Источник: https://www.radioingener.ru/toki-fuko/

Применение токов Фуко

Токи Фуко играют полезную роль в роторе асинхронного двигателя, который приводится во вращательное движение магнитным полем. Сама реализация принципа работы асинхронного двигателя требует появления токов Фуко.

Токи Фуко используют при демпфировании подвижных частей гальванометров, сейсмографов и ряда других приборов. Так, на подвижную часть прибора устанавливают пластинку — проводник в виде сектора. Она вводится в промежуток между полюсами сильного постоянного магнита.

Когда пластинка движется, в ней появляются токи Фуко, это вызывает торможение системы. Причем торможение появляется только тогда, когда пластинка движется. Следовательно, подобного рода успокаивающее устройство не мешает точному приходу системы в состояние равновесия.

Теплоту, которая выделяется токами Фуко, используют в процессах разогрева. Так, плавка металлов с использованием токов Фуко является весьма выгодной в сравнении с другими методами разогрева.

Так называемая индукционная печь представляет собой катушку, по которой идет ток высокой частоты и большой силы. Внутрь катушки помещают проводящее тело, в нем появляются вихревые токи большой интенсивности, которые и разогревают вещество до плавления.

ЭТО ИНТЕРЕСНО:  Как найти общее напряжение

Так проводят плавление металлов в вакууме, что ведет к получению материалов высокой чистоты.

При использовании токов Фуко проводят прогрев внутренних металлических частей вакуумных установок с целью их обезгаживания.

Проблемы, которые вызывают вихревые токи. Скин — эффект

Токи Фуко могут играть не только полезную роль. Вихревые токи являются токами проводимости, и часть энергии рассеивают на выделение джоулевой теплоты. Такая энергия, например, в роторе асинхронного двигателя, который изготавливается, обычно из ферромагнетиков, нагревает сердечники, тем самым ухудшаются их характеристики.

Для борьбы с таким явлением сердечники производят в виде тонких пластин, которые отделяются тонкими слоями изолятора и устанавливают пластины так, чтобы токи Фуко имели направление поперек пластин. При небольшой толщине пластин вихревые токи имеют малую объемную плотность.

С появлением ферритов и веществ с большим магнитосопротивлением стало возможным изготовление сердечников сплошными.

Вихревые токи возникают в проводах, в которых текут переменные токи, причем направление токов Фуко таково, что они ослабляют ток внутри провода и усиливают его около поверхности. Следовательно, быстро изменяющийся ток распределен по сечению провода неравномерно. Такое явление называется скин — эффектом (поверхностным эффектом).

Из-за этого явления внутренняя часть проводника становится бесполезной и в цепях с большой частотой используют трубки в качестве проводников.

Скин — эффект может применяться для разогрева поверхностного слоя металла, что позволяет использовать это явление для закалки металла, причем, изменяя частоту поля, можно проводить закалку на любой необходимой глубине.

Приближенные формулы, которыми можно описать скин-эффект в однородном цилиндрическом проводнике:

Рисунок 1.

где $R_w$ — эффективное сопротивление проводника радиусом $r$ переменному току с циклической частотой $w$. $R_0$ — сопротивление проводника постоянному току.

где эффективная глубина проникновения переменного тока ($\delta $) (расстояние от поверхности проводника, на котором плотность тока уменьшается в $e=2,7\ $раз в сравнении с плотностью на его поверхности) равна:

$\mu $ — относительная магнитная проницаемость, ${\mu }_0$ — магнитная постоянная, $\sigma $ — удельная электропроводность проводника для постоянного тока. Чем толще проводник, тем существеннее скин — эффект, тем меньше величины $w$ и $\sigma $, при которых его следует учесть.

Пример 1

Задание: В опыте с центробежной машиной к ней прикрепили массивный медный диск, привели этот диск во вращение с большой скоростью. Над диском подвесили (без соприкосновения) магнитную стрелку. Что будет происходить со стрелкой, почему?

Решение:

Магнитная стрелка выступает в роли магнита, который создает магнитное поле, в этом поле вращается медный проводник. Следовательно, в проводнике возникают индукционные токи — токи Фуко. По правилу Ленца вихревые токи, взаимодействуя с магнитным полем, стремятся остановить вращение диска или в соответствии с третьим законом Ньютона увлечь за собой магнитную стрелку. Значит, магнитная стрелка, которая висит над диском, будет поворачиваться вслед за ним и закрутит подвес (нить).

Ответ: Магнитная стрелка будет вращаться, причина — вихревые токи.

Пример 2

Задание: Объясните, почему подземный кабель, по которому передается переменный ток нельзя прокладывать вблизи от металлических газовых и водопроводных труб?

Решение:

Под действием переменного тока вокруг кабеля возникает переменное магнитное поле, если в это поле попадает проводник (металлическая труба), то возникнут индукционные вихревые токи. Эти токи вызывают коррозию металлических труб. Кроме того наличие токов в трубах опасно, так как возникает возможность поражения током.

Пример 3

Задание: Маятник, изготовленный из толстой листовой меди, имеет форму усеченного сектора. Он подвешен на стержне и может совершать свободные колебания вокруг горизонтальной оси в магнитном поле между полюсами сильного электромагнита. В отсутствии магнитного поля маятник совершает колебания практически без затухания. Опишите колебания маятника в магнитном поле электромагнита. Как заставить маятник колебаться почти без затухания в присутствии магнитного поля?

Решение:

Если описанный массивный маятник, осуществляющий колебания, поместить в сильное магнитное поле, то в маятнике возникают токи Фуко. Эти токи по правилу Ленца тормозят движения маятника, амплитуда колебаний уменьшается, и сами колебания скоро прекращаются.

Для того чтобы уменьшить вихревые индукционные токи в маятнике, осуществляющем колебания в магнитном поле, можно его сплошной сектор заменить гребенкой с удлинёнными зубцами. Токи Фуко будут уменьшены, и маятник будет совершать колебания практически без затухания.

Источник: https://spravochnick.ru/fizika/toki_fuko/

Блуждающие токи и борьба с ними

5 Дек 2017

Блуждающие токи, называемые также токами Фуко, являются одной из самых серьезных проблем для находящихся в земле металлоконструкций. Ещё совсем недавно, в XIX и начале XX века этого никогда не возникало.

Причиной появления стали многочисленные мощнейшие источники постоянного тока, контактирующие с поверхностью земли.

Метрополитен, троллейбусы и трамваи, различные электролитические установки, контуры заземления и прочие источники с электрическими полями порождают небольшие разряды, способные путешествовать на большие расстояния. Когда на их пути встречается металл, то происходит простейшая электролитическая коррозия.

Необходимо привести пример, для полного понимания этого явления. В одном из гаражей города, семья решила использовать недавно приобретенную бочку из нержавеющей стали для засолки овощей.

Весной ёмкость дала сильную течь, а вскоре дно, которое от 2 мм истончилось до толщины фольги, полностью выпало. Эту работу проделали блуждающие токи. Это явление являются одним из самых каверзных, потому что оно не щадит ни один металл.

Алюминий, медь, цинк и прочие элементы быстро разлагаются под действием сильнейшей коррозии.

Методы защиты от токов Фуко

Сделать это очень сложно, но многочисленные компании постоянно разрабатывают средства защиты. Они обладают определенной эффективностью, но также имеют большое количество нюансов, которые необходимо учитывать при использовании:

  • Катодная защита металлоконструкций. На поверхность наносится специализированное напыление, а затем по всему корпусу пропускается электрический ток. Эта сложная мера эффективна только на особо крупных конструкциях. Например, так защищают нефтяные танкеры, протяженные ограды, большие ёмкости и хранилища, зарытые в земле. Единственным существенным недостатком такого метода является то, что вся система сама начинает порождать блуждающие токи. Тогда необходимо каждому находящемуся в грунте металлическому элементу придавать одинаковый отрицательный потенциал.
  • Специализированные антистатические краски и покрытия. Их основная задача не допустить электролитических явлений на поверхности. Это позволяет быстро достичь определенного уровня защиты, но она неудобна тем, что рано или поздно слой вспучит ржавчина. А эти открытые места станут особо уязвимыми для коррозии.
  • Подъём на диэлектрический фундамент. Именно с этой целью рекламные щиты прикручивают на шпильки, залитые в бетон. Большое количество различных изделий имеют конструкцию из двух материалов. В землю заглубляется твердый армированный пластик, а над землей находится металл.
  • Отказ от металлов в конструкции. С учетом роста количества современных композитных материалов, это становится реальностью. Но стальным сплавам отдают предпочтение благодаря возможности сваривания металлов, чего нельзя сделать с пластиком.
  • Тотальная гидроизоляция. Она позволяет избежать доступа реакций электролитической диссоциации к поверхности металлического объекта. А это значит, что токи не смогут вызвать электрохимическую коррозию.

Какие условия являются наиболее благоприятными

Наличие солей в почве способствует распространению токов с огромной скоростью. Как показывает практика, распространение практически не происходит в песках. Это обусловлено сухостью грунта, где токи сразу же теряются.

ЭТО ИНТЕРЕСНО:  Штанга что это такое

Поэтому проблема практически не актуальна для стран Ближнего Востока, где конструкции в грунтах почти не страдают. Также токи не могут распространяться в условиях сухого климата.

Заболоченные просоленные почвы, которыми изобилуют Карелия и Финляндия — это идеальный вариант.

Где нет блуждающих токов?

Они практически полностью отсутствуют в сельской местности, а также на различных удаленных объектах. Но если будет использован заземленный трансформатор, то тогда повреждений не избежать. Правда они будут значительно меньше, чем в условиях города.

Сейчас борьба с этим явлением является одним из приоритетных направлений в своде наук, изучающих коррозию металлов. Особенно подвержены таким явлениям комплексные сплавы. В чистом виде не используется ни один металл, поэтому вопрос остаётся открытым.

Источник: https://shop.p-el.ru/blog/stati/pro-elektrichestvo-i-svet/bluzhdayushchie-toki-i-borba-s-nimi/

Energy education

Толщиномер — это измерительный прибор, позволяющий с высокой точностью измерить толщину материала или слоя покрытия материала. Современные приборы позволяют измерить толщину покрытия без нарушения его целостности.

Механические толщиномеры

Толщиномер выполняется в форме скобы. Для снятия показаний прибора применяется отсчетное устройство связанное со специальным наконечником расположенными сверху, а пятка находится снизу.

Настольные толщиномеры имеют скобу с поверхностью, необходимую для лучшей устойчивости на поверхности. Толщиномеры ручные имеют в скобе отверстие, удобное для удерживания прибора в руке.

Толщиномеры с нормированным измерительным усилием имеют арретир (отводку) для отвода наконечника отсчетного устройства.

Толщиномер.

В приборах данного вида для измерений используются как магнитная индукция, так и эффект Холла, позволяющий проводить измерения плотности магнитного поля. Для создания магнитного поля чаще всего используется мягкий ферромагнитный стержень с катушкой.

Также, в свою очередь, для обнаружения каких-либо изменений в магнитном потоке применяется второй стержень с катушкой. Толщина покрытия определяется путём измерения плотности магнитного потока.

Допустимый процент погрешности измерений для приборов данного типа равен ± 3%.

Вихретоковые толщиномеры

Для проведения измерений непроводящих покрытий без их разрушения используются толщиномеры с вихретоковым принципом действия. На поверхности зонда прибора с помощью тока (с частотой от десятков КГц до единиц МГц), проходящего через катушку, на которую намотана тонкая проволока, генерируется переменное магнитное поле. При приближении зонда к токопроводящей поверхности, переменное магнитное поле генерирует на ней вихревые токи (токи Фуко).

Вихревые токи создают собственные (противоположные первичному) электромагнитные поля, которые могут быть измерены основной или второстепенной обмоткой. Вихретоковый метод используется преимущественно для хорошо проводящих поверхностей, в частности сделанных из цветных металлов (например алюминий).

Величина напряжения на измерительной обмотке (измеряемая величина) зависит от расстояния от неё до электропроводящей поверхности, которая и является толщиной непроводящего покрытия.

Толщиномер.

Для ультразвуковых толщиномеров характерно наличие ультразвукового датчика в зонде, который посылает импульс через анализируемое (чаще всего неметаллическое) покрытие. Импульс отражается от поверхности и затем преобразуется датчиком в высокочастотный электрический сигнал. Эхо сигнала оцифровывается и анализируется для определения толщины покрытия. Допустимый процент погрешности измерений для приборов данного типа равен ± 3%.

Ультразвуковые толщиномеры часто используются в ситуациях, когда имеется доступ только к одной стороне поверхности изделия, толщина которого должна быть определена, например: трубопроводы или в тех местах, где простые механические измерения невозможны или нецелесообразны по другим причинам, таким как, размер изделия или ограниченный доступ.

Факт того, что измерение толщины может быть сделано легко и быстро с одной стороны, без необходимости вырезания какой-либо части, является главным преимуществом использования ультразвукового толщиномера. Практически любой конструкционный материал может быть измерен с помощью ультразвука.

Ультразвуковой толщиномеры может быть использован для металлов, пластмасс, композитов, стекловолокна, керамики и стекла.

Ультразвуковой контроль является одним из методов неразрушающего контроля без необходимости резки или секционирования. Диапазон измерений зависит от материала и выбранного преобразователя, и может быть в пределах от 0.08 мм до 635 мм. (Как правило такие материалы как: дерево, бетон, бумага и пенопласта обычно не подходят для измерения с обычными ультразвуковыми датчиками).

Все ультразвуковые толщиномеры работают на основе очень точного измерения времени необходимого звуковому импульсу, сгенерированному преобразователем, для прохождения через тестовый образец. Поскольку звуковые волны отражаются от поверхности материала, измерение эхо от дальней стороны образца может быть использовано с целью измерения его толщины, таким же образом, как радар или сонар для измерения расстояния. Разрешение может быть в пределах 0.001.

Толщиномер.

Принцип работы магнитных толщиномеров основан на использовании свойств постоянных магнитов. Позволяют производить замер немагнитных покрытий нанесенных на магнитные основания. Процесс замера осуществляется на основе оценки силы взаимодействия магнита толщиномера и основания измеряемого покрытия. Изменение толщины покрытия изменяет силу взаимодействия магнита и основания измеряемой специально откалиброванной шкалой.

Толщиномер.

Источник: http://www.energyed.ru/Auto/LengthCh04

История открытия токов Фуко

Впервые явление возникновения вихревых токов в 1824 году обнаружил французский ученый Франсуа Жан Доминик Араго. Он исследовал влияние магнитного поля на проводник. В своих опытах француз использовал медный диск, который находился на одной оси с вращающейся магнитной стрелкой. Поскольку стрелка была источником изменяющегося во времени магнитного потока, медный диск начинал вращаться.

И хотя Араго не смог объяснить данное явление (позже его раскрыл Майкл Фарадей), оно все же было названо в честь французского ученого (явление Араго). Однако сами вихревые токи были тщательно исследованы еще позже французским физиком Жаном Бернаром Фуко в честь которого впоследствии и были названы.

Где используются

Токи Фуко достаточно широко используются в различных областях производства и даже в быту. Так, к примеру, тепловая энергия, возникающая вследствие воздействия вихревых токов на проводник используется в промышленных индукционных печах и бытовых индукционных плитах.

Также токи Фуко используются для прогрева металлических деталей в вакуумных установках при их дегазации (закаливании), а также для снижения паразитных колебаний в различных механизмах.

Паразитное воздействие

Не смотря на широкое применение токов Фуко, в большинстве случаев их возникновение нежелательно. Это касается как слаботочных так и мощных электрических установок, где вихревые токи из-за процесса нагревания металлических частей приводят к энергетическим потерям.

Источник: http://scsiexplorer.com.ua/index.php/osnovnie-ponyatiya/2237-toki-fuko.html

Индукционный ток токи фуко

g84jsm9tB4S

Каждый человек, который изучает электродинамику и другие разделы науки об электричестве, сталкивается с таким понятием, как вихревые токи. Что это такое, какие есть свойства вихревых токов, как определить их в трансформаторе? Об этом и другом далее.

Полезное и вредное действие

Имеют токи фуко полезное и вредное действие. Они нагревают и плавят металлы в области вакуума и демпфера, но в то же время происходят энергопотери в области трансформаторных сердечников и генераторов из-за того, что выделяется большое количество тепла.

Как определить в трансформаторе

Узнать, где находятся вихревые токи в трансформаторе, несложно. Как правило, они располагаются в трансформаторных сердечниках. Когда замыкаются в сердечниках, то нагревают их и создают энергию. Поскольку появляются в плоскостях, которые перпендикулярны магнитному потоку по характеристике, происходит трансформаторное уменьшение сердечников.

Обратите внимание! Для их измерения используются изолированные стальные пластины.

Понравилась статья? Поделиться с друзьями:
220 вольт